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ABSTRACT 

Indirect effects appear to play a significant role in the organization and transformation of 

complex adaptive systems (CAS).  In ecosystems, one type of CAS, organisms and their 

environments are coupled by an intricate network of energy, matter, and information exchanges.  

This makes it possible for one species to affect the distribution, abundance, and behavior of other 

species without direct contact.  Because we do not fully comprehend factors controlling the 

development and propagation of indirect effects through the interaction networks of CAS, we 

cannot predict their importance a priori.   

The overarching goal of the research presented in this dissertation is to develop a better 

understanding of processes that create, constrain, and sustain ecological systems.  The research 

focuses on the role of ecosystem architecture (structure and function) in the development and 

propagation of environ indirect effects, which result from energy–matter transactions.  In 

Chapters 2 and 3 we distinguish the role of biodiversity and the number and pattern of 

interactions in creating indirect pathways. In the process, we reveal a form of hierarchical 

organization based on strongly connected components.  In Chapters 4 and 5, we examine how 

the distribution of energy–matter flux across a fixed structure influences the magnitude of 



 

environ indirect effects in models of nitrogen in the Neuse River Estuary and phosphorus in Lake 

Sidney Lanier, respectively.  Finally, in Chapter 6, we assess the relative role of structure and 

function in the development of environ indirect effects in 20 ecosystem models of energy flow.  

We find that while certain structural elements are important (e.g., cycles) they are insufficient to 

determine the magnitude of environ indirect effects; the distribution of boundary inputs and 

internal flows is critical.   

This research adds to our growing understanding of the causes and consequences of 

indirect effects in ecosystem organization and transformation.  It characterizes new aspects of the 

role ecosystem architecture plays in the development and propagation of indirect effects, and 

expands the methodology of Network Environ Analysis, an environmental extension of 

economic Input-Output Analysis.  These fundamental developments will provide a firmer 

foundation for critical environmental management concepts including ecosystem health, 

integrity, and sustainability.   
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INTRODUCTION 
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“…the goodness and the excellence of the piper or sculptor, or the practiser of any art, and 

generally those who have any function or business to do, lies in that function…,” Aristotle in 

Nichomachean Ethics 

“Form follows function,” Louis H. Sullivan 

“Form and function are one,” Frank Lloyd Wright 

1.1 FORM AND FUNCTION 

Understanding the dialectic between form and function is a classic problem that pervades 

the arts and sciences.  Form is defined as “the shape and structure of something as distinguished 

from its material” (Merriam-Webster Online Dictionary, 2005a); function is “the action for 

which a person or thing is specially fitted or used or for which a thing exists” (Merriam-Webster 

Online Dictionary, 2005b).  Plato emphasized the value of the true (but he believed not 

empirically observable) underlying form of an object or idea (Kraut, 2004), while Aristotle 

claimed the highest value derived from an entity’s function (Ferris, 1988; Kraut, 2001).  The 

significance of form and function continues to challenge our disciplinary studies today 

(Krakauer, 2003).  Archeologists divine the function of unearthed human relics by studying their 

structure and associations.  Architecture embodies both form and function, although the opening 

quotes by Wright and his mentor Sullivan demonstrate that architects do not necessarily agree on 

which element takes precedence.  Wright suggests the distinction between form and function is 

artificial; the two are convolved and co-implicating.  Biology is steeped in this idea.  Biologists 

routinely study the interplay of living forms and their functions.  For example, the anatomical 

forms of vertebrate bones (e.g., their shapes and sizes) are routinely interpreted by how they 

relate to where muscles and connective tissues attach and how this enables organism movement.  
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DNA sequencing is the first step toward uncovering structural patterns expected to reveal the 

structure and ultimately the function of genes (Collins and Patrinos, 1998).  

Ecologists have been investigating the processes that create and maintain ecosystem 

structure and function for over a quarter century (e.g., Tansley, 1935; Lindeman, 1942; Odum, 

1953; Patten, 1959; Teal, 1959; Odum, 1960; Odum, 1962, 1969).  Ecosystems are open, 

dissipative, far-from-equilibrium thermodynamic systems composed of biotic and abiotic 

elements transferring and transforming energy, matter, and information.  Ecosystems receive 

high-exergy flows of energy and matter at their boundaries, perform organizational work of 

aggradation (departure from equilibrium), and produce heat and degraded byproducts which are 

dissipated to the environment (Jørgensen et al., 1992; Patten, 1998a; Jørgensen et al., 2000).  

Like other kinds of complex adaptive hierarchical systems (Levin, 1998; Patten et al., 2002), 

ecosystems appear to self-organize in response to thermodynamic gradients (Schneider and Kay, 

1994; Capra, 1996; Müller, 1996, 1998; Patten, 1998b).   

Beyond general curiosity, ecosystem research is motivated by a desire to translate this 

knowledge into sound environmental management (Christensen, 1996; Reichman and Pulliam, 

1996); ecosystems provide the natural capital and services that support human endeavors 

(Costanza et al., 1997; Daily, 1997).  Today, ecologists are grappling with concepts like 

ecosystem health (Rapport et al., 1998; Costanza and Mageau, 1999), ecosystem integrity (Kay, 

1991; Westra and Lemons, 1995), and sustainability (Patten, 1988; Kay et al., 1999; Holling, 

2001), trying to adequately define them and determine their use.  The challenge, however, is that 

we still lack fundamental understanding regarding the causes and consequences of ecosystem 

organization and transformation (Reichman and Pulliam, 1996; Jørgensen, 2002).  Advances 

have been made on this topic (e.g., Odum, 1969; Hannon, 1973; Finn, 1976; Carpenter et al., 
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1985; Ulanowicz, 1986, 1997; Gunderson and Holling, 2002; Jørgensen, 2002), but the problems 

are complex and refractory, leaving us with much uncertainty.   

The overarching goal of the research presented in this dissertation is to deepen our 

knowledge of the causes and consequences of ecosystem organization (form and function).  My 

aim is to improve the theoretical understanding of processes that create, constrain, and sustain 

ecosystems.  Ultimately, I expect this work will provide a firmer foundation for concepts like 

ecosystem health, integrity, and sustainability.  In this chapter, I introduce my conceptual 

framework and focal research question.  I conclude with an overview of the dissertation chapters 

and discuss the ties that bind them. 

1.2   INDIRECT EFFECTS 

Indirect effects, the ability of one species or system element to influence another without 

directly interacting with it, appear to have a significant role in the organization and 

transformation of biological systems.  They have long been recognized by biologists (Darwin, 

1959), and the challenge they pose for environmental management helped spark the 

environmental movement (Carson, 1962).  Though arduous to investigate, ecologists are 

increasingly recognizing the significance of indirect effects as components of ecological 

interactions (Patten, 1983; Andrewartha and Birch, 1984; Patten, 1984; Miller and Kerfoot, 

1987; Strauss, 1991; Wootton, 1994, 2002) and evolution (Miller and Travis, 1996; Laland et al., 

1999; Odling-Smee et al., 2003).  Wootton (2002) recently argued that indirect effects are “… a 

fundamental cause of ecosystem complexity.”   

Part of the difficulty of analyzing indirect effects is that there appear to be multiple types 

(Miller and Kerfoot, 1987; Strauss, 1991; Wootton, 1994).  Wootton (1993; 1994; 2002) initially 

partitioned indirect effects into two types: interaction chains and interaction modifications.  
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Interaction chains occur when one species impacts another by affecting a third.  This occurs by 

linking two or more direct interactions together.  For example, in the chain A  B  C, A 

indirectly influences C by directly influencing B.  As ecologists are often interested in the 

abundance or density of species, these have also been termed ‘density mediated interactions’ 

(Abrams et al., 1996).  According to Wootton (2002), several commonly studied ecological 

interactions arise from this type of indirect interaction, including keystone predation, trophic 

cascades, apparent competition, indirect mutualisms, and exploitative competition.  Interaction 

modifications, on the other hand, occur when a species modifies the interaction between two 

additional species.  At least two types of interaction modifications have been identified.  ‘Trait–

mediated indirect effects’ (Abrams et al., 1996) occur when one species changes the traits or 

behavior of a second that alters how it interacts with a third.  For example, Pacific killifish 

(Fundulus parvipinnis) parasitized by the trematode Euhaporchis californiensis tend to exhibit 

conspicuous behavior making them more susceptible to predation by avian predators than 

unparasitized killifish (Lafferty and Morris, 1996).  ‘Environment–mediated interaction 

modifications’ occur when one species changes the environmental context in which two species 

interact (Wootton, 2002).  Ecosystem engineers, such as beavers that construct ponds providing 

habitat for aquatic organisms, are one example (Jones et al., 1997). 

Again, organisms and elements of their abiotic environments are coupled together 

through an intricate network of energy-matter exchanges (Patten et al., 1976; Ulanowicz, 1986; 

Higashi and Burns, 1991).  While observation and analysis of these transaction networks cannot 

identify specific mechanisms or depict all types of indirect interactions (Loehle, 1990; Wootton, 

1994), they do capture many types of indirect interactions reflected in trophic dynamics and 

biogeochemistry (Patten, 1990; Higashi and Burns, 1991).  These include some indirect 
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interactions from each of the three broad categories identified earlier.   Therefore, analysis of 

these flow–storage networks may illuminate the consequences of particular system 

organizations, particularly the indirect effects mediated by this transaction network. 

Through Network Environ Analysis (NEA), Patten and colleagues (Patten, 1981, 1983, 

1984, 1985b; Higashi and Patten, 1986, 1989; Patten et al., 1990; Patten, 1991) have begun to 

characterize one type of indirect effects, termed environ indirect effects, in ecosystem flow–

storage models.  One way these effects are characterized at the whole-system level in NEA is by 

the ratio of indirect-to-direct flows (Indirect/Direct).  This ratio indicates the significance of 

indirect flows within a system’s internal environs, which are within system, compartment-

specific, input and output oriented environments (Patten, 1978, 1981, 1982, 1992).  Previous 

results suggest that Indirect/Direct tends to be greater than unity in model ecosystems, implying 

that indirect flows are dominant (Patten, 1981, 1983, 1985b; Higashi and Patten, 1986, 1989; 

Patten et al., 1990; Patten, 1991; Fath, 1998; Fath, 2004).  These results led Patten (in prep.) to 

hypothesize that the natural world is unified through indirect effects, which is one of the cardinal 

hypotheses of Holoecology (see also Chapter 2).   

Past work indicated that both system structure and function influence the degree of 

indirect effects.  For example, Higashi showed algebraically how an increase in system size 

(number of species, n), proportion of direct links (L) connected or connectivity (C = L/n2), 

strength of feedback and direct relations, looping or storage, and cycling tend to increase 

Indirect/Direct (Patten et al., 1990; Patten, 1991).  The relative importance of structure and 

function in the development of environ indirect effects, however, is unknown.  This knowledge 

is crucial to deepening our understanding of how indirect effects bind together ecological 
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systems and alter how systems respond to environmental impacts.  This is the specific objective 

of this research. 

1.3 NETWORK PERSPECTIVE 

Throughout this dissertation I employ a network perspective (Ponstein, 1966; Patten et 

al., 1976; Ulanowicz, 1986; Higashi and Burns, 1991; Margalef, 1991; Albert and Barabási, 

2002; Newman, 2003; Patten, in prep.).  From this perspective, complex systems like ecosystems 

are modeled as a graph or directed graph in which agents are represented as graph nodes (n), 

non-directed interactions are edges (e), and directed interactions are arcs or links (L).  In an 

ecosystem network model, species, functional groups, and abiotic compartments are nodes while 

energy–matter transactions and transformations between the nodes are links.  The ecosystem 

structure (form) is then captured by the arrangement or topology of these nodes and interactions.  

Food-webs are a classic ecological network in which only one type of transactive relation – 

feeding – is typically identified.  Ecosystem models also include information regarding the 

magnitude of energy–matter flow and storage, or ecosystem function, along each connection.  

Mathematically, the network model becomes a weighted digraph.  This perspective is useful 

because it allows analysts to utilize graph, combinatoric, and linear algebra mathematical tools to 

holistically characterize and quantify system structure and function.  The research presented in 

this dissertation uses and extends one type of ecosystem network analysis: Network Environ 

Analysis (NEA).  NEA is an environmental application and extension of economic Input–Output 

Analysis (Leontief, 1965, 1966).  It is used to holistically investigate environmental systems.  It 

operates like a macroscope (rather than a microscope) to characterize whole-system organization 

by describing, quantifying and analyzing the component-level environments or environs that 

compose a system.  Fath and Patten (1999) review the foundations of NEA.  Methodological 
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details are well described in extant literature (Barber et al., 1979; Matis and Patten, 1981; Patten 

and Matis, 1982; Hippe, 1983; Fath, 1998; Fath and Patten, 1999; Patten, in prep.; Patten et al., 

in prep.). 

1.4 DISSERTATION OVERVIEW 

Chapters 2-6 form the dissertation core.  They were written as stand-alone publishable 

units, but collectively they pivot around the focal question: what is the role of ecosystem 

architecture (form and function) in the development of environ indirect effects?  In Chapters 2 

and 3, my coauthors and I focus on structure.  We develop and clarify the pathway proliferation 

concept introduced by Patten and colleagues (Patten et al., 1982; Patten, 1985a), provide two 

new measures for the rate of pathway proliferation, and investigate factors determining these 

rates.  In the process, we uncover the presence of multiple strongly connected components in 

food webs, which introduce a form of modularity (hierarchical subdivisions into more or less 

interacting subsystems) into these models.  Both pathway proliferation and strongly connected 

components are expected to influence the development of indirect effects.  In Chapter 4 and 5, 

we explore how flow and storage variability impact measures of indirect effects developed in 

NEA while model structure remains constant.  Flow–storage variability in the Neuse River 

Estuary model of nitrogen flux, which we inspect in Chapter 4, is created by a temporal sequence 

of models.  The variability is generated by model uncertainty due in part to limited empirical 

data in the model of Lake Sidney Lanier we investigate in Chapter 5.  In Chapter 6, we perform a 

comparative NEA of twenty ecosystem models of energy flux.  Both structure and function vary 

in these models, allowing us to assess the relative significance of the two elements on the 

magnitude of environ indirect effects.  The final chapter of the dissertation provides a summary 

of key findings in the dissertation and a discussion of their larger significance.  The appendices 
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describe a MATLAB® function (NEA.m) created with Brian Fath to facilitate the application of 

NEA. Modifications of this function were used to perform analyses throughout this dissertation.   
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CHAPTER 2 

STRUCTURE OF PATHWAYS IN ECOLOGICAL NETWORKS: RELATIONSHIPS 

BETWEEN LENGTH AND NUMBER1

1 HEADING 1 

2 HEADING 1 

 

                                                 

1 Borrett, S.R. and B.C. Patten. 2003. Ecological Modelling 170: 173-184.  
Reprinted here with permission of publisher 
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ABSTRACT 

In ecosystems, network structure determines adjacent (direct) and non-adjacent (indirect) 

pathways over which energy, matter, and information can flow.  The more pathways the more 

possible ways conservative substance can move in zero-sum transactions between network nodes 

that the pathways interconnect, and the more possible non-conservative, nonzero-sum relations 

can be secondarily derived from these.  Structural analysis is a tool we employ, from a family of 

input–output methods for exploring zero- and nonzero-sum attributes of environmental networks, 

to count pathways of varying length between network nodes.  In this paper we examine the 

relationship between pathway length (k) and number (Pk) as determined by system size (n, 

number of nodes) and extent and pattern of connectance (C). We develop a measure (ma) of 

pathway growth in numbers with increasing length, and then normalize this to the maximum rate 

possible (ma/mc) for a given system size.  These measures apply to two pathway types—paths, 

ma(0) and ma(0)/mc(0), which forbid adjacent node repetitions, and walks, ma(1) and ma(1)/mc(1), 

which allow them.  We find that network size has a curvilinear effect on the pathway number vs. 

length relationship, and extent and pattern of connectance are convolved.  Values computed for 

the paths and walks of three ecosystem models (oyster reef, freshwater marsh, and reservoir 

cove) are used to compare their pathway structure. 
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2.1 INTRODUCTION 

Environ analysis (Patten, 1978a, 1982; Matis and Patten, 1981) is a family of input–

output methods of network analysis descended from Leontief (1965, 1966) and introduced into 

ecology by Hannon (1973).  Environ methodology is employed in the holistic study of ecological 

networks to describe, quantify, and analyze component-level environments (environs) within 

systems.  These environments are of two types, afferent (input environs) which are generated by 

history, and efferent (output environs) which are propagated to the future.  Environ methods 

include analyses for structure, flows, utilities, and control within systems, and are a form of 

complex-systems analysis as described by Allen and Hoekstra (1992, p. xiv).  In this paper, we 

elucidate several attributes of environ network structure, which underlies much of the environ 

analysis methodology. 

Network structure establishes the pathways (direct and indirect) over which conserved 

material can flow between entities in connected systems (Fath and Patten, 1999).  The 

relationship between pathway numbers and length is a significant component of this structure 

because it describes how quickly indirect pathways increase, and with this also, proportional 

opportunities for substance to move and for positive “nonzero-sumness” (Wright, 2000) to be 

realized.  In a well-connected system, the number of pathways in a network increases without 

bound as pathway length increases (Fath, 1998; Patten, 1985).  The rate of this increase, 

however, varies (Borrett, 2001; Fath, 1998).  Here, we investigate the cause of this variation by 

developing measures to examine the proposition that the relationship between pathway length 

and number is determined by three variables: system size, connectance degree, and connectance 

pattern.  We apply our measures to three ecosystem models and then consider the results. 
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2.1.1 TRANSACTIONS AND RELATIONS 

The network perspective (Margalef, 1963; Higashi and Burns, 1991) conceptualizes an 

ecosystem as a reticulum of interactions.  These are of two types, transactions and relations (Fath 

and Patten, 1998).   

Transactions are physical (ontic, electromagnetic) and have primacy.  They are zero-sum 

exchanges of conservative substances between adjacent network nodes representing processes 

and storages (slow processes).  Zero-sumness means what is gained (+) by one member of an 

interacting node pair identically equals what is lost (–) by the other.  The quantities being equal, 

their signs opposite, and the substance transferred conservative means the interactive sum is 

zero.   

Relations are phenomenal (epistemic, semiotic) interactions as experienced and 

interpreted by participants and observers.  What is transferred between non-adjacent nodes is 

conservative but nonzero-sum (Wright, 2000), and in the latter property begins to have attributes 

of non-conservative information.  Competition, predation, and mutualism are classic examples of 

relations in ecology.  In general, relations have their basis in transactions but need not in 

themselves involve direct energy or matter interchange, e.g., predation does, but competition and 

mutualism do not.   

By conceptualizing complex systems like ecosystems as networks, we can analyze them 

holistically for properties arising from the transactions and relations interconnecting component 

parts.  

2.1.2 PATHWAYS AND CYCLES 

Network structure can be represented by digraphs (directed graphs) or isomorphic 

matrices (Margalef, 1963; Hannon, 1973; Patten, 1985).  In digraphs a node is a point 
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representing a system component and an arc is an arrow denoting a directed transaction (energy 

or matter flow) or relation (Figure 2.1A).  A pathway is a sequence of nodes and arcs over which 

a substance flows (in transactions) or relationships emerge (in relations) from node j to node i.  

Pathway length (k) is the number of arcs from an initial to a terminal node.  A direct pathway 

between two nodes has only one arc, k = 1; an indirect pathway has k > 1 arcs.  Pathways can be 

simple, where there are no repeated nodes, or compound, with repeated nodes.  In the Fig. 2.1 

network j → f → g → h → i is a simple pathway from j to i while j → f → g → f → i is a 

compound pathway.  Both are indirect and of length k = 4. 

Cycles are an important type of pathway in network structures (Patten, et al., 1990).  A 

cycle is a pathway starting and ending at the same node, as in the embedded pathway segment … 

→ f → g → f → … in our example (Figure 2.1A).  Like other pathways, cycles can be simple 

(first time around) or compound.  A cycle of length k = 1 is a self-loop; this can be used to 

represent node storage in a network (e.g., …→ i → i → i → …).   

2.1.3 NETWORK STRUCTURAL MEASURES 

The size (n) of a network equals its number of nodes.  Connectance (C) is the proportion 

of realized direct (k = 1) pathways, often termed links (L) in food-web literature (Cohen et al., 

1990; Martinez, 1994; Bersier et al., 1999; Williams and Martinez, 2000), divided by the number 

of possible links, n2: C = L/n2 (see Margalef, 1991; Newman, 2002 for alternative formulations).   

Digraphs have isomorphic representations as adjacency matrices, An×n = (aij)n×n (Figure 

2.1B).  An adjacency matrix is a square matrix whose rows and columns are indexed by the node 

vector (i, j = 1, 2, …, n) and whose elements take values aij = 1 if and only if a link directed from 

column j to row i exists, otherwise aij = 0.   
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Each column denotes the presence (ones) or absence (zeros) of links directed from node j 

to node i in the corresponding digraph, that is, links in the j’th output environ of the system.  In 

Figure 2.1B, for example, column j has ones at rows f and i denoting links j → f and j → i in 

Figure 2.1A.  The orientation from columns (initial nodes) to rows (terminal nodes) is the same 

as that of the digraph arrows, reflecting the fact that output environs extend forward through the 

system from starting to ending nodes.     

Each row of A denotes the presence or absence of links directed to node i from row j in 

the system’s i’th input environ.  Thus, in Figure 2.1B row i has ones at columns j, f and h 

denoting links i ← j, i ← f, and i ← h in Figure 2.1A.  The orientation to rows (terminal nodes) 

from columns (initial nodes) is opposite that of the digraph arrows, reflecting the fact that input 

environs extend backward through the system from ending to starting nodes.   

This reverse orientation can be treated separately in the columns-to-rows format of A 

matrices by performing the operations of this paper on corresponding transposes AT
n×n = (aji)n×n, 

mentally reversing the arrow directions.  Numerical results would differ since the pathway 

structure directed from initial to terminal nodes differs from that in the reverse direction, but the 

principles elaborated would be the same.  Therefore, for present purposes we will limit further 

attention to output environs whose structure is generated by matrices A, not their transposes.  

We will employ two forms of the adjacency matrix.  A(0) will denote a matrix with zero 

principal diagonal entries, ajj = 0, signifying no node storage, and A(1) will be a matrix with 

diagonal ones, ajj = 1, representing digraph self-loops denoting storage.  The former pathways 

are termed paths and the latter walks in subsequent usage.  Connectance pattern is the network 

geometry (topology) of nodes and arcs as reflected in a digraph or its corresponding adjacency 

matrix. 
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A power matrix, Ak can be used to compute the number of pathways of length k ≥ 0 

directed from j to i in a network (Harary, 1969; Hill, 1981); k = 0 denotes self-loops.  The total 

number of pathways (Pk) of different lengths (k) from all nodes to all other nodes is given by the 

scalar measure: 

∑∑
==

=
n

i

k
ij

n

j
k aP

11

)( . 

The number of pathways of all lengths from each j to each i is generated by the matrix power 

series: 

I + A + A2 + A3 + …+ Ak + … 

The first term A0 = In×n corresponding to k = 0 signifies the network’s n nodes as initial in 

pathway propagation.  The next term A denotes adjacency – direct links (k = 1) defined by zero-

sum transactions directed from j’s to i’s.  The remaining terms Ak, k > 1, denote pathways that 

are non-adjacent, indirect, relational, and carry nonzero-sum flows.  In a well-connected system, 

one with cyclic feedback and a maximum real eigenvalue greater than one, the series diverges 

because sums of powers of the A-matrix entries grow as k increases (Fath, 1998).  This is 

consistent with the fact that ecological systems are dissipative; energy and matter pass through 

them and ultimately exit as a limit process.  This implies k → ∞ and therefore Ak → ∞.  Also, as 

k increases, Pk increases approximately geometrically.  By log-transforming Pk we generate a 

line of slope ma (index a referring to the digraph corresponding to A) that can be used to describe 

the rate of growth of Pk with k.    

2.1.4 NETWORK STRUCTURE IN ENVIRON ANALYSIS 

The methods of environ analysis (Patten 2003, Chapter 4) can be grouped in pairs: 

(1 & 2) Input and output environ structure, which is our focus in this paper. 
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(3 & 4) Input and output environ flows to throughflows.  Throughflows (Ti) are sums of flows at 

nodes (i = 1, …, n) in storage-and-flow networks.  The input environ case corresponds 

to original Leontief (1965, 1966) input–output analysis.  

(5 & 6)  Input and output environ flows to node storage (xi, i = 1, …, n).  From the network 

perspective, storage is interpreted as flow impedance, like capacitance in electrical 

networks. 

(7 & 8) Throughflow- and storage-based utilities, u(Ti) and u(xi) respectively, generated by net 

input- and output-environ direct flows between node pairs (Patten 1991).  Utility 

measures direct and indirect values of throughflow and storage conferred by the 

particulars of network organization. 

(9 & 10) Throughflow- (Patten, 1978b) and storage-based (Patten, 2003) control, c(Ti) and c(xi) 

respectively, exerted over network distances, k.  Direct and indirect control are assessed 

and quantified between each node pair in a system.  

Each of these methods generates a unique perspective on relationships inherent in 

ecological networks.  These derive from one overarching result from analyses 3–6 above: flows 

f(Ak) over pathways Ak of lengths k > 1 in the adjacency matrix power series often exceed in 

aggregate those associated with the direct links in the adjacency matrix A itself.  That is, 

∑k>1f(Ak) > f(A).  The reason is because although conservative quantities dissipate with transfers 

and transformations in networks, this happens more slowly than the rates at which pathways are 

generated in well-connected networks (Patten, 1985).  Each pathway of whatever length carries 

some quantity of transferred substance until lengths kd are reached where materials have been 

effectively dissipated (dissipation is a limit process) such that flows over those pathways are 

zero.  This fact allows power series of non-dimensional flows to converge, which is what enables 
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input–output methods to calculate integral flows carried by all pathways Pk of all lengths k ≥ 0 in 

a system.  Small, even infinitesimal, flows over large, approaching astronomical, numbers of 

pathways generated before lengths kd are reached can add up to significant total flow over paths 

Pk of lengths k > 1.  This is in fact the essential input–output network dynamic.  Its consequence 

is that indirect effects dominate (Patten, 1984; Higashi and Patten, 1989) and make holistic 

determination (Patten et al., 1976) the principal mode of causality in nature (Patten, 2003). 

Higashi (see Patten, 1991) developed algebraic formulations to show that certain network 

properties increase the dominance of indirect over direct effects.  These are system size (n), 

connectivity (C), network looping (storage), network cycling, feedback cycling (return to initial 

nodes), and strength of direct arc flows.  All but the last are structural properties, as considered 

here.  In this paper we investigate the relationship between pathway length (k) and number (Pk) 

as determined by the first two of Higashi’s properties, n and C. 

As pathway structure defines how conserved substances can flow in connected networks, 

the more pathways there are the more possible ways exist for energy and matter to move 

between nodes.  Structural analysis, however, does not consider how much substance actually 

flows along each pathway, it only enumerates the pathways.  To determine flow relationships 

requires other analyses such as those in the environ set of methods.  As stated previously, here 

our topic is structural analysis.   

2.2 MATERIALS AND METHODS 

We will investigate how three properties of networks—(1) system size, (2) connectance 

degree, and (3) connectance pattern—contribute to the rate of pathway proliferation.  Below we 

describe methods to test each, and introduce model ecosystems we will analyze as examples. 
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2.2.1 SYSTEM SIZE 

To determine if there is a relationship between system size and pathway length and 

number, we analyzed digraphs of varying sizes (n = 1 to n = 200).  Both arbitrary digraphs (a) 

and their complete counterparts (c) were studied.  Complete digraphs have a link to and from 

every node (aij = 1, ∀i,j); their analyses quantify walks due to principal diagonal values of one, 

ajj = 1.  For paths, the same digraphs with self-loops excluded (aij = 1 ∀i ≠ j, and ajj = 0) were 

analyzed.  For a given network a (or c) we determined ma (or mc), the slope of a line describing 

the relationship between pathway length and the logarithm of pathway number.  Slopes were 

calculated as differences between an arbitrarily selected pair of adjacent Pk values; the values 

used were k = 50 and 51: ma (or mc) = log10 (P51) – log10 (P50).  If size does not affect the 

relationship slopes should be roughly equivalent between networks.  Use of complete graphs 

neutralized the effects of degree and pattern of connectance, and also generated the maximum 

number of possible pathways. 

2.2.2 EXTENT OF CONNECTANCE 

If there were a relationship between system size and pathway length and number, the size 

effect would have to be removed in order to examine the connectance of systems of different 

sizes.  To accommodate this we created a normalized response variable by taking ratios of slopes 

generated by actual digraphs, ma, to those for complete graphs, mc, of the same size.  For paths 

this measure is ma(0)/mc(0) and for walks ma(1)/mc(1).  The second part of our investigation was 

to determine if degree of connectance in adjacency matrices altered ma/mc ratios.  We held 

system size constant and then systematically added connections (Figure 2.2, networks A1–A4).  

If connectivity does not affect the relationship, then ma/mc should remain constant.  It became 
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clear that augmenting connectivity typically alters the pattern of connectance as well (next 

section).  The two attributes are convolved, such that if varying the pattern changes ma/mc, the 

effects of degree cannot be distinguished from pattern. 

2.2.3 PATTERN OF CONNECTANCE 

To investigate the effects of connectivity pattern we held network size and degree of 

connectance constant while varying the pattern (Figure 2.2, networks A5–A8).  Changes were 

made so as to maintain cyclic feedback.  Each test network had n = 9 and C = 0.12.  In A5 there 

is a chain of links spanning the network, with two links in the upper right corner providing the 

possibility for cycle development.  Matrix A6 is similar to A5 but the chain is slightly altered.  In 

A7, the chain is replaced with a block of connections in the lower left corner.  The final 

manipulation (A8) was to aggregate the links in the top right and bottom left corners.  Structural 

analysis was performed on each of these networks to determine ma/mc for paths and walks.  We 

would consider connectance pattern as having no effect if these measures remained constant as 

topology changed.   

In addition to actually changing connections (Figure 2.2, A5–A8) it is also possible to 

change the perceived linkage pattern.  For example, renumbering nodes in a digraph would leave 

the pattern of connections unchanged, but the display in the corresponding adjacency matrix 

would (typically) be altered.  To test if this kind of change would be reflected in our measures 

we analyzed alternative representations of the same network created by interchanging two or 

more columns and then making an identical change in the corresponding rows (Figure 2.2, 

networks A9–12; the A9 matrix functions as a control).  In A10 column (row) 5 (of A9) was 

placed between columns (rows) 1 and 2, column (row) 7 between columns (rows) 2 and 3, and 

column (row) 8 between columns (rows) 3 and 4.  Matrix A11 was created by moving column 
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(row) 4 into the first column (row) position and column (row) 9 between columns (rows) 6 and 

7.  Matrix A12 was generated by moving columns (rows) 5 and 6 into the first two positions.  

These row and column interchanges clearly changed perceived patterns in the adjacency 

matrices, but without altering actual network topology.  These manipulations are equivalent to 

symmetric permutations of the adjacency matrix.  If ma/mc ratios changed under this kind of 

manipulation we would conclude that the measure is invalid for network structural analysis.  A 

proper measure would yield unique ma/mc ratios for a network irrespective of its representation.   

2.2.4 EXAMPLE NETWORKS 

We applied structural network analysis to three static, steady state, ecosystem models to 

compare their direct and indirect pathway structure.  The models differ in size, connectivity, 

connectance pattern, and type of ecosystem represented.  Our goal was to determine the degree 

of similarity in these models’ network structures.  The models were for (1) an intertidal oyster 

reef in coastal South Carolina (Dame and Patten 1981), (2) a marsh called Little Cooter Prairie in 

Okefenokee Swamp (Whipple 1995), and (3) a reservoir cove in Lake Texoma (Patten et al. 

1975).  We will refer to these as oyster, marsh, and cove models, respectively.  The oyster model 

has six compartments and connectivity C = 0.50.  Patten (1985) described the direct and indirect 

pathway structure of this network, and the model has been used further to develop ecological 

network theory (e. g., Patten et al. 1990, Higashi and Burns 1991).  The marsh model has 42 

compartments and a connectivity of C = 0.20.  The cove model has 33 compartments and 

connectivity C = 0.30.  Like the oyster model, the cove model has been used before in theory 

development and many of its specific pathways have been identified (e. g., Patten et al., 1982). 
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2.3 RESULTS 

Experimental results showed network size, and extent and pattern of connectance all 

affect the relationship between path numbers (Pk) and length (k).  The effect of connectance 

degree was inconclusive because this is convolved with pattern.  Relabeling digraph nodes 

without altering real topology changed the adjacency matrix pattern, but did not alter ma/mc 

ratios. 

2.3.1 SYSTEM SIZE 

Figure 2.3 shows results of determining if size (n) of fully connected networks increases 

the rate (mc) at which higher order pathways are generated.  As network size increases the rate of 

growth of pathway numbers increases and the difference between mc values for corresponding 

paths and walks decreases (Figure 2.3A).  The reason is that the proportion of self-loops (n) in a 

fully connected network relative to all arcs (n2) decreases by the factor n/n2 = 1/n.  This causes 

the relationship between system size and rate of pathway increase to be curvilinear (Figure 

2.3B).  In fully connected networks size influences the growth of system structure most in 

smaller networks where the ratio of n to n2 is greatest. 

2.3.2 EXTENT OF CONNECTANCE 

To evaluate degree of connectance in non-complete digraphs requires use of a normalized 

metric like ma/mc.  Given C < 1 (incomplete connectance) one can visualize slopes of actual 

networks (ma) being less than those of corresponding complete networks (mc).  Then, in Figure 

2.3A format, ma values would generate lines of lesser slope than mc and curve forms like those of 

Figure 2.3B would rise more slowly.  Connectance changes made in the experimental networks 

A1–A4 of Figure 2.2 changed the values of ma/mc (Table 2.1).  These ratios increased with 
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connectance but not consistently.  For example, network A8 in Table 2.1 has lower connectance 

than A1, but its ma/mc values are larger.  This shows that extent and pattern of connectance are 

interwoven quantities, not easily separated by simple measures. 

2.3.3 PATTERN OF CONNECTANCE  

Changing the pattern of connectance clearly alters the relationship between number (Pk) 

and length (k) of pathways.  In Table 2.1 network A5 has ma(0)/mc(0) = 0.0413 and ma(1)/mc(1) 

= 0.3345.  The small pattern change in A6 vs. A5 causes ma(0)/mc(0) to increase to 0.1024 and 

ma(1)/mc(1) to 0.3668.  The pattern in A7 generates ma(0)/mc(0) = 0.3211 and ma(1)/mc(1) = 

0.4923, while A8 has an ma(0)/mc(0) ratio of 0.3333 and an ma(1)/mc(1) value of 0.5000.  As 

connections become more concentrated in the lower left and top right corners of the matrix, 

reflecting an increase in the number of cycles, ma/mc increases.   

Reordering network nodes in the adjacency matrix under the constraint that order is 

consistent for both rows and columns, does not affect ma/mc.  In all four representations of a 

fixed topology (A9–A12), the same path and walk ratios were obtained (Table 2.1): ma(0)/mc(0) 

= 0.3406 and ma(1)/mc(1) = 0.5046.  This result is not unexpected and is quite general because 

symmetric permutations of adjacency matrices generate isomorphic graphs, which have identical 

structural properties (Logofet 1993; Bondy and Murty 1976).    

2.3.4 COMPARISON OF EXAMPLE MODELS 

In non-complete networks of the oyster, marsh, and cove models pathway numbers (Pk) 

increased without bound as length (k) increased (Figure 2.3).  As in the Figure 2.2 experimental 

networks, walks increased faster than paths and differences in their rates of increase decreased 

with system size.  The rate (ma) at which number of pathways increases in the oyster model is 
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less than that of the marsh and cove models, which between themselves are very similar.  Rates 

ma(0) and ma(1) of, respectively, path and walk generation in the three models indicate that the 

difference between marsh and cove models is small and that between these two and the oyster 

model larger (Table 2.2). 

The normalized measure ma/mc indicates somewhat different relationships than those 

based on non-normalized slopes.  In Table 2.2, ma(0)/mc(0) is least for the oyster model (0.4750) 

and greatest for the cove model (0.6826), whereas ma(1)/mc(1) is least for the marsh model 

(0.6321) and greatest (0.7027) for the cove model.  The ranking changes between paths and 

walks.  Faster walk than path development in the oyster vs. the other two models is a size (n/n2 = 

1/n) effect, as previously described.  Adding n self-loops to < n2 arcs (in incomplete graphs) has 

a greater effect when n is small.  It is also evident from higher values of ma(0)/mc(0) and 

ma(1)/mc(1) for the cove model (Table 2.2) that more of the potential ways to move energy and 

matter are realized in this model than in the oyster and marsh models.  

2.4 DISCUSSION 

In ecosystems virtual structure is defined by direct (adjacent) zero-sum transactions of 

conservative energy and matter exchanged between organisms and their environments.  The 

transactions set up more diverse and wide-ranging informational relations that are indirect (non-

adjacent) and nonzero-sum.  Relations make life in the ecosphere infinitely varied and for the 

most part positively experienced by organisms (Patten, 1991) over their time-lines (Jørgensen et 

al., 1992). 

Network structure establishes pathways over which conserved material can flow between 

entities in connected systems.  The relationship between pathway numbers and length is a 

significant network attribute because it describes how quickly indirect pathways increase, and 
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thus, the volume of pathways available for transactions and relations.  In this paper we have 

demonstrated, consistent with other findings from environ analysis, that network size (n) and 

connectance degree (C) and pattern contribute to shaping of the pathway length (k) and number 

(Pk) relationship.  System size was shown to have a curvilinear effect.  Connectance extent and 

pattern were found to jointly influence this relationship, though in ways not easily separated.  

Our main conclusions are:  

1. In well-connected networks, pathways increase geometrically with length 

regardless of system size, as measured by ma;  

2. System size has a curvilinear effect on the relationship between pathway length 

and number;  

3. Irrespective of system size, connectance can be compared utilizing the measure 

ma/mc; and 

4. While connectance degree is entangled with pattern, connectance pattern has a 

clear role in determining the rate of pathway increase, as measured by ma.   

Our measure of path growth, ma, indicates an increase rate based on the total number of 

pathways Pk of selected lengths k.  A less empirical (and less heuristic) metric is the dominant 

eigenvalue of the adjacency matrix, max|λ|.  This analytically determines the asymptotic growth 

rate of paths between any node pair (Fath 1998, Hill unpublished manuscript).  This rate is 

identical for all node pairs and represents the overall growth rate of pathways for that structure.  

Experimental trials using the maximum eigenvalue measure (Tables 1 and 2) are consistent with 

those reflected in ma. 

By eliminating the effect of size, our normalized measures ma/mc for paths and walks 

characterize the combined effect of connectance and topology on the indirect network structure.  
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The measures can be used to compare indirect structure between systems of different sizes, and 

the next logical step in this research would be to try to establish a relationship between particular 

connectance patterns and associated variation in ma/mc values.  Teasing apart the effect of 

magnitude from the pattern of connectance itself we consider important to making inferences 

from ma/mc back to network structure.  Other research questions also present themselves, such as 

the relationship between ma and ma/mc and network properties such as the cycling index (Finn, 

1976), or some of the eleven cardinal properties of “holoecology” (Patten, 2003) derived from 

the environ approach: 

#1. Network proliferation—increase in pathway numbers (Pk) with length (k), which 

is geometric increase as described herein; 

#2. Network nonlocality—dominance of indirect effects as carried by transactive 

flows (f), ∑k>1f(Ak) > f(A); 

#3. Network holocontrol—dominance of indirect control (c), ∑k>1c(Ak) > c(A); 

#4. Network homogenization—tendency to uniformly distribute causality; 

#5. Network amplification—obtaining more than face value from boundary inputs 

f(aij
(0)): ∑k>0f(aij

(k)) > f(aij
(0));  

#6. Network unfolding—proliferation of transfer levels as a limit process, which in 

food webs leads to trophic pyramids with an indefinite number of trophic levels; 

#7. Network synergism—dominance of indirect over direct utility (u), ∑k>1u(Ak) > 

u(A); 

#8 Network mutualism—indirect utilities becoming more positive than direct;  

#9. Network aggradation—internal order exceeding generated disorder; 
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#10. Network enfolding—recursive incorporation of indirect into direct causes such 

that f(A) is really f(A(∑k≥1f(Ak))); and 

#11. Network holoevolution—the coevolution of wholes and parts together. 

 

The classical concept of “pattern and process” in ecology comes to the fore in this list.  

Pathway notations (Ak = (aij
(k)), k ≥ 0) introduced into some of the definitions show how central 

network structure is to the principal results of environ analysis.  That network properties 

reflecting function (“process”) can be depicted (in functional notation) as functions of structure 

(“pattern”) underscores how closely the two are intertwined.  In fact, as previously stated, 

structure is virtual and follows function (transactions), which is actual.  From this it is reasonable 

to expect that structural measures such as ma and ma/mc can be useful in predicting or bounding 

measures of function such as the cycling index or some of the eleven above.  The logic here is 

that labyrinthine transactions define and implicate, respectively, the direct and indirect pathway 

structure within systems, including cycles.  In fact the implication is mutual.  Structure and 

function, or pattern and process, go together and methods like those in the set of environ 

analyses are going to be required to distinguish one from the other. 

Scale and modeling issues will be ever present in this.  The oyster reef, swamp marsh, 

and reservoir cove ecosystems were each modeled at particular scales not necessarily alike.  

Network size and connectivity in models reflect the resolution at which systems are studied.  A 

network representation of the interior of a cell can be far more intricate than that for an 

ecosystem (e.g., Guet et al., 2002; Jeong et al., 2000; Maslov and Sneppen, 2002).  At their own 

scales it is true that both can be equally complex, or the smaller perhaps more complex than the 

larger.  In general, finer grain of observation leads to more nodes and links, which by Higashi’s 
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algebraic relations translates into greater dominance of indirect effects.  However, recalling the 

definition of connectance (C = L/n2, L the number of links), it is clear that finer resolution of 

nodes (n) will cause n2 to grow faster than n, rarefying C.  At very large system sizes adjacency 

matrices can be expected to become extremely sparse though number of links is astronomical.  A 

system with a billion nodes (n = 109) and a trillion transactions interconnecting them (L = 1012) 

will be only one-millionth connected (L/n2 = 10–6), a sparse universe indeed in the present 

experience of ecological modeling.  How to balance practical needs to describe and predict with 

the companion need to understand principles in order to better describe and predict, will present 

a continuing challenge.   
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2.7 TABLES 

Table 2.1: Effect of connectance degree and pattern on measures of the rate of pathway 

proliferation for walks (ma(1)/mc(1)), paths (ma(0)/mc(0)), and the asymptotic rate (max|λ|); Fath, 

1998; Hill, unpublished manuscript) 

Matrix n C ma(1)/mc(1) ma(0)/mc(0) max|λ| 

Connectance 

A1 9 0.20 0.2688 0.4602 1.7489 

A2 9 0.25 0.3406 0.5046 2.0306 

A3 9 0.41 0.6449 0.7161 3.8229 

A4 9 0.62 0.8352 0.8642 5.6786 

Pattern of Connectance 

A5 9 0.12 0.0413 0.3345 1.0851 

A6 9 0.12 0.1024 0.3668 1.2388 

A7 9 0.12 0.3211 0.4923 1.9498 

A8 9 0.12 0.3333 0.5000 2.0000 

Network Representation 

A9 9 0.25 0.3406 0.5046 2.0306 

A10 9 0.25 0.3406 0.5046 2.0306 

A11 9 0.25 0.3406 0.5046 2.0306 

A12 9 0.25 0.3406 0.5046 2.0306 

Matrix number corresponds to experimental networks shown in Figure 2.2 
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Table 2.2: Comparison of pathway proliferation rates in three ecosystem models 

Model n C ma(0) mc(1) ma(0)/mc(0) ma(1)/mc(1) max|λ| 

Oyster 6 0.50 0.33 0.50 0.4750 0.6400 2.1479 

Marsh 42 0.20 0.98 1.03 0.6095 0.6321 9.6170 

Cove 33 0.30 1.02 1.06 0.6826 0.7027 10.4217 
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2.8 FIGURE LEGENDS 

Figure 2.1:  Example Network.  Two isomorphic representations of an example network with n = 

5 and C = 0.28.  A) Digraph, B) Adjacency matrix.  Note how the pattern of connections 

in the digraph is represented in the matrix.   

Figure 2.2:  Experimental Networks. Twelve experimental networks were used to investigate 

degree and pattern of connectance.  A1–A4 are the same size and have increasing 

connectivity.  A5–A8 have the same size and connectance, but the pattern of linkage is 

altered.  In A9–A12 size, connectance, and pattern of connection remain constant but 

reordering the node vector alters the adjacency matrix representation. 

Figure 2.3:  Relationships between number of pathways (Pk) and pathway length (k) as network 

size (n) increases from 1 to 200.  A) Selected networks to demonstrate relationships.  

Note how differences between paths, A(0), and walks, A(1), decrease as size increases.  

B) Using the slope (ma) of the relationship to describe it, we see that size has a 

curvilinear affect on ma. 

Figure 2.4:  Structural comparison of three model ecosystems:  A) oyster reef (Dame and Patten 

1981),  B) Okefenokee marsh (Whipple 1995) and C) Lake Texoma cove (Patten et al., 

1975). 
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Figure 2.2 
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Figure 2.3 
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CHAPTER 3 

PATHWAY PROLIFERATION AND MODULARITY IN ECOLOGICAL NETWORKS1

1 HEADING 1 

2 HEADING 1 

3 HEADING 1 

 

                                                 

1 Borrett, S.R, B.D. Fath, and B.C. Patten, To be submitted to Journal of Theoretical Biology 

 

44



 

ABSTRACT 

Large-scale structural patterns have been found in network models of complex systems 

including a skewed node degree distribution and small-world topology.  These patterns suggest 

common organizational constraints and similar functional consequences.  In this paper, we 

investigate a structural pattern termed pathway proliferation.  Previous research enumerating 

pathways linking species determined that as pathway length increases, the number of pathways 

increases without bound at differing rates.  Variable rates translate into important differences in 

the flow of energy, matter, and information in ecosystems.  In this paper, we further clarify the 

pathway proliferation concept, describe factors influencing the node-node proliferation rate, and 

characterize pathway proliferation rates in 17 large empirical food-webs.  We show that pathway 

proliferation 1) occurs if there is at least one cycle or feedback in the graph, 2) the proliferation 

rate, indicated by the dominant eigenvalue λ1(A), is identical among nodes within a strongly 

connected component, but can vary between components within a network, and 3) though 

topology can be a factor, the proliferation rate is heavily influenced by the number of nodes 

(compartments, species) and number of direct links (flows).  Strongly connected components 

introduce a form of modularity in food-webs.  Our analysis of 17 large empirical food-webs 

revealed that ten contained at least one non-trivial (n>1) strongly connected component.  Thus, 

over half the food-webs contained at least one simple cycle, establishing feedback loops.  The 

number of trophospecies in one or more a strongly connected component ranged from 2% to 

60% of the total species.   Pathway proliferation rates ranged from 2 to 10.25 (pathways per 

length) in these modules, and half appeared to be determined by trophospecies and trophic 

relation richness; food-web topology was not a factor.  However, in half of the modules 

ecological processes appeared to have constructed structure uncommon in randomized 

 

45



 

components.  We conclude that the presence of strongly connected components and pathway 

proliferation in ecological networks reveals subgroups of species that will be functionally 

integrated by cyclic indirect effects. 
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3.1 INTRODUCTION 

Large-scale structural patterns have been uncovered in network models of complex 

systems, suggesting the possibility of common organizational constraints and similar functional 

consequences.  Network models are mathematical graphs composed of nodes and undirected 

edges or directed arcs that connect the nodes.  For example, in a social network nodes might 

represent individuals in a community and the edges or links could represent a social relationship 

between the individuals such as collaboration (Newman, 2001a, b).  In a model of the World 

Wide Web, web pages are nodes connected by hyperlinks (Albert et al., 1999; Barabási and 

Albert, 1999).  Ecologists use network models in many ways, including representing trophic 

relations in food-webs and more generally energy–matter flux in ecosystems.  In these networks, 

species or functional groups form the node set while the presence of energy and matter transfers 

and transformations are represented by links. 

Traditionally, complex systems have been modeled using random graphs (Erdös and 

Rényi, 1959, 1960; Gardner and Ashby, 1970; May, 1972).  Ecologists recognize, however, that 

random graphs are inadequate models of ecological systems (DeAngelis, 1975; Lawler, 1978); 

food-web and ecosystem models often contain structures not commonly found in random graphs 

(DeAngelis, 1975; Pimm, 1979, 1982; Cohen et al., 1990; Pimm et al., 1991).  In food-webs, 

these hypothesized structures have included short food-chain lengths (Pimm and Lawton, 1977; 

Post, 2002) and little or no cycling (Cohen et al., 1990).  Several forms of modularity (hierarchic 

compartmentalization into subsystems) have been hypothesized for food-webs and ecosystems 

(May, 1972; Pimm, 1979; Pimm and Lawton, 1980; Allen and Starr, 1982; Yodzis, 1982).  

Ulanowicz and Wolff (1991) demonstrated that random networks (based on the Poisson, 

uniform, Gaussian, negative exponential, and log-normal probability distribution functions) were 
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inadequate representations of real ecosystems.  The organization of ecological systems is shaped 

and constrained by thermodynamic laws and natural history (Lawler, 1978; Jørgensen et al., 

1992; Müller and Leupelt, 1998; Williams and Martinez, 2000).  

Likewise, investigations of other types of complex systems have recently identified a 

number of distinctive patterns common in complex systems not found in purely random graphs 

(Albert and Barabási, 2002; Newman, 2002, 2003).  For example, the distribution of node degree 

(i.e., the number of edges (links) incident to a node) is often skewed in models of complex 

systems, following an exponential distribution or a power-law distribution rather than the 

Poisson distribution of random graphs.  The power-law distribution was found in the World 

Wide Web (Barabási and Albert, 1999), metabolic networks (Jeong et al., 2000), and some but 

not all food-webs (Dunne et al., 2002b; Montoya and Sole, 2002).  The power-law degree 

distribution implies that there are a large number of nodes with very few connections, while a 

few nodes have a large number of connections (Barabási, 2002).  This topology tends to increase 

network robustness to random node or edge deletion, while making it more sensitive to targeted 

attacks (Albert et al., 2000; Dunne et al., 2002b).  The small-world pattern is another commonly 

found topology (Watts and Strogatz, 1998; Watts, 1999).  In small-world networks, the degree of 

node clustering is higher and the maximum distance (where distance is the shortest path between 

two nodes) is lower than expected from random graphs.  This arrangement tends to increase the 

transmission speed of diseases, energy, matter, and information through networks.  The largest 

distance in food-web graphs tends to be small, but the degree of clustering varies (Dunne et al., 

2002a).   

Pathway proliferation is another large-scale topological characteristic of networks, with 

implications for energy, matter, and information transmission.  It is the tendency for the number 
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of pathways in a network to increase geometrically without bound as pathway length increases.  

Patten and colleagues (Patten et al., 1982; Patten, 1985a, b) first observed this tendency in small, 

well-connected ecosystem models during the early development of ecosystem network analysis.  

The rate of pathway proliferation is variable among networks (Fath, 1998; Borrett and Patten, 

2003).  This is significant because the pathway proliferation rate characterizes how quickly the 

number of indirect pathways increases, and thus, the number of pathways available for 

interactions.  Often food-web investigations emphasize the shortest pathway, assuming that most 

significant interactions occur over this route (e.g. Caldarelli et al., 1998; Post et al., 2000).  

However, previous results from Network Environ Analysis, an environmental application and 

extension of economic Input-Output Analysis, indicate that flows over longer indirect pathways 

can be significant or even dominant constituents of total system throughflow (Patten, 1983; 

Higashi and Patten, 1986, 1989).  This has important implications for trophodynamics (Patten et 

al., 1990; Burns et al., 1991; Whipple, 1998) and biogeochemical cycling in ecosystems (Borrett 

et al., submitted, see Chapter 4).  Given the possible significance of indirect pathways in network 

models of conservative transport systems like ecosystems, it is critical to understand the network 

characteristics influencing the pathway proliferation rate.   

In this paper, we clarify the pathway proliferation concept, describe factors influencing 

the proliferation rate, and characterize pathway proliferation rates in 17 large empirical food-

webs.  In Section 3.2 we review relevant mathematics to build a better understanding of pathway 

proliferation.  In Section 3.3 we apply this understanding to 17 food-web models drawn from the 

literature.  This analysis reveals a type of modularity in some of the food-webs, lending support 

to the hypothesis that food-webs have a modular structure (May, 1972; Pimm and Lawton, 1980; 
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Yodzis, 1982; Krause et al., 2003).  We conclude by summarizing our findings and suggesting 

next steps along this research path. 

3.2 PATHWAY PROLIFERATION 

Though pathway proliferation was introduced into the ecological literature over two 

decades ago (Patten et al., 1982; Patten, 1985a, b), it is not well understood.  Here, we synthesize 

mathematical results from graph theory and matrix algebra to 1) determine a method for 

quantifying the node-node pathway proliferation rate, 2) identify the bounds and expected value 

of the rate, and 3) uncover the possibility of differing rates of pathway proliferation for modules 

within a network. 

  Network models of complex systems are mathematically graphs which can be directed 

or weighted (Ponstein, 1966; Bang-Jensen and Gutin, 2001).  A graph G is specified by a set of n 

nodes and e unoriented edges (0 ≤ e ≤ n
2

)1n(n
+

− ), where edges indicate an undirected 

relationship between two nodes. A directed graph (digraph) D is also specified by a set of n 

nodes, but instead of edges it has L oriented arcs or links (0 ≤ L ≤ n2).  Edges and links can be 

assigned weights to represent the relationship strength.  In this paper, we focus on simple 

unweighted digraphs, where simple implies no more than one link from one node to any other.  

We do this for several reasons.  First, directed graphs are often appropriate for ecological 

applications as many ecological processes are oriented (e.g., predation and excretion generate 

energy and matter flows from one ecosystem element to another).  Second, while the 

mathematics described in this paper may apply to non-simple and weighted graphs, our interest 

here is primarily network structure as it is a necessary if not sufficient element of understanding 

ecosystem organization.  Digraph structure is partially characterized by two connectivity 
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measures, connectance C = L/n2 and link density L/n.  These are common metrics in food-web 

literature (Cohen et al., 1990; Martinez, 1991). 

3.2.1 QUANTIFYING PATHWAY PROLIFERATION 

In a directed graph, a pathway is an alternating sequence of nodes and links connecting a 

starting and terminal node.  Pathway length m is the number of links in the pathway.  For 

example, in the directed graph D in Figure 3.1A there is a pathway of length 2 from node 1 to 

node 3 (e.g., 1  2  3).  Cycles are pathways with the same starting and terminal nodes, and a 

cycle of length one is a self loop.  In our example network, 1  2  3  1 is cycle of length 

three, and 4  4 is a self loop.  Pathways with self loops are termed walks, those without are 

paths (Patten, 1985a).  D can alternatively be represented by its associated and isomorphic 

adjacency matrix An×n = (aij), where aij = 1 if there is a link from j to i (note column to row 

orientation), otherwise aij = 0 (3.1B).  The number of direct links terminating or starting at a node 

is termed the in-degree and out-degree, respectively.  These are calculated as  

and , where kin and kout are 

∑
=

==
n

1j
ij

in
i

in a)k(k

∑
=

==
n

1i
ij

out
j

out a)k(k n1×  and 1n ×  vectors respectively.  Average in- 

and out-degrees (<kin>  or <kout>), and degree distributions P(k) are ways of characterizing 

network structure (Albert and Barabási, 2002; Newman, 2003).   

Indirect pathways (m>1) are enumerated by raising the adjacency matrix to the mth power 

Am = (aij)m (Ponstein, 1966).   Again, pathway proliferation is the tendency for the number of 

pathways in a network to increase without bound as a function of increasing pathway length 

(Figure 3.1C).  Borrett and Patten (2003, see Chapter 2) approximated whole system pathway 
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proliferation rate as 
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where signifies the aij element of Am.  This 

estimate holds only for sufficiently large m.  Therefore, following Fath (1998), here we will 

define pathway proliferation in terms the rate at which aij
(m) changes as m  ∞, making pathway 

proliferation a combinatorial property of A (Seneta, 1973). 

)m(
ija

Development of Am as m increases is a combinatorial property of A determined by its 

characteristic polynomial, )AIdet()( −λ=λπ , where λ is the variable in the polynomial and In×n 

is the identity matrix (Seneta, 1973; Godsil, 1993).  The eigenvalues of A, λi ( ), are 

roots of the characteristic polynomial, determined as solutions to 

n,,1i K=

0)( =λπ .  The set of 

eigenvalues {λ1 ≥ λ2 ≥ … ≥ λi  ≥…≥ λn} is termed the spectrum of A, which is studied to deduce 

structural properties of graphs (Cvetkoviâc et al., 1980).  For undirected graphs, A is symmetric 

and all λi are real; in directed graphs λi may be complex.  Further, these eigenvalues must satisfy 

, where WAW Λ= ]wwww[W ni21nn KK=×  is a composite matrix of the right eigenvectors 

wi, and  is a matrix with the eigenvalues of A on the principle diagonal and 

zeros in all other positions.  The eigenvalues must also satisfy , where 

)(diag inn λ=Λ ×

Λ= VVA

]vvvv[V ni21nn KK=×  is a composite matrix of the left eigenvectors vi ( ).    Am is 

then determined as 
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where the columns of W are the right eigenvectors of A, and W−1 is the matrix inverse of W, 

which are the transposed complex conjugates of the left eigenvectors V (Caswell, 2001).  If we 

let  be the ith row of W–1, then we can rewrite (3.1) as *
iv

 .   (3.2) *
nn

m
n

*
ii

m
i

*
33

m
3

*
22

m
2

*
11

m
1

m vwvwvwvwvwA λ++λ++λ+λ+λ= KK

This equation is the pathway generating function of A (Godsil, 1993), and illustrates how the 

development of Am as m increases depends on the spectrum of A. 

Digraphs and matrices can be classified using two different schemes.  We introduce these 

classifications here because they are essential to the application of a theorem that will allow us 

later to develop a more succinct estimate of the rate of pathway proliferation.  First, digraphs can 

be classified as one of three types: strongly connected, weakly connected, and disconnected.  A 

digraph is strongly connected (strong) if it is possible to reach every node from every other over 

a pathway of unspecified length.  Bang-Jensen and Gutin (2001) define a (sub)digraph with only 

one node as strong, though this seems trivial for our purposes.  A weakly connected (weak) 

digraph is one in which it is possible to reach any node from any other node if we ignore link 

orientation, but every node cannot be reached from every other node when following link 

orientation.  Nodes of a weak digraph must have an in-degree or out-degree of at least 1.  A 

disconnected graph is one that contains one or more non-adjacent strong or weak components.   

Second, adjacency matrices associated with digraphs are also of different types.  All 

adjacency matrices are non-negative because all aij ≥ 0.  Adjacency matrices are irreducible if 

and only if they are associated with strong digraphs, while those associated with weakly 

connected and disconnected digraphs are reducible (Berman and Plemmons, 1979).  Irreducible 

matrices are further divided into two classes: primitive and imprimitive.  A primitive matrix is an 
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irreducible matrix that becomes positive (aij > 0, for all i,j)  when raised to a sufficiently large 

power (Seneta, 1973).    

An induced subdigraph of D is a subset of nodes in D with all links that both start and 

terminate on the node subset.  A maximally induced subdigraph is the largest induced subdigraph 

that is strong.  Weak and disconnected digraphs with associated reducible matrices are 

decomposable into a unique set of maximally induced strongly connected subdigraphs, termed 

strongly connected components (Kα, α ≤ n) (Bang-Jensen and Gutin, 2001).    This implies that 

there is at least one simple cycle (no repeated medial nodes) that connects all the nodes in a non-

trivial strongly connected component.  Adjacency matrices associated with Kα are irreducible.  

Our example digraph (Figure 3.1A) is disconnected, but contains two connected subdigraphs {1, 

2, 3, 4} and {5, 6, 7}.  It can be partitioned into five strongly connected components K1 = {1, 2, 

3}, K2 = {4}, K3 = {5}, K4 = {6}, K5 = {7}.  Only K1 is non-trivial.  The adjacency matrix 

associated with each strongly connected component is irreducible; the adjacency matrices 

associated with K1 and K2 are primitive.              

The Perron-Frobenius theorem guarantees there is one real eigenvalue equal or larger 

than all other eigenvalues, )A()A( i1 λ≥λ  (i = 2,…,n) in irreducible matrices (Seneta, 1973; 

Berman and Plemmons, 1979).  In the literature λ1(A) is alternately referred to as the dominant 

eigenvalue, the Perron eigenvalue, and the spectral radius.   

As shown by Caswell (2001), we can divide both sides of (3.2) by λ1(A), 

 nnm
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If A is primitive and irreducible, then λ1(A) is strictly larger than iλ  for all i>1, where •  is 

the norm of •  (this is necessary since λi may be complex).  Taking the limit of both sides of (3.3) 

as pathway length increases, we find that 

 11m
1

m

m
vwAlim =

λ∞→
. (3.4) 

Thus, while smaller eigenvalues will influence pathway proliferation over shorter path lengths, 

as path length increases the pathway proliferation rate asymptotically becomes λ1(A):  

)A(
A

A
1m

1m

λ→
+

 as m  ∞ (Hill, unpublished ms.).  Therefore, λ1(A) is the asymptotic rate of 

pathway proliferation in a strongly connected graph with a primitive adjacency matrix.  The 

damping ratio 
)A(
)A(

2

1

λ
λ

=ρ  characterizes the rate of convergence to λ1(A) (Caswell, 2001). 

In strong digraphs with an imprimitive irreducible adjacency matrix there are d ≤ n 

eigenvalues with the same absolute magnitude, and one or more may be complex (Seneta, 1973).  

The Perron-Frobenius theorem then indicates that the common absolute magnitude of the d 

eigenvalues will be larger than the other n–d eigenvalues.  Thus, as m  ∞ only the d largest 

eigenvalues will influence pathway proliferation.  Caswell (2001) reports that these digraphs 

generate oscillatory dynamics. 

Each strong component Kα of a weak or disconnected digraph will have its own 

independent rate of pathway proliferation, λ1(Kα) (read “λ1 of Kα”).  Trivial strongly connected 

components (those with only one node) will have a pathway proliferation rate of 0 or unity 

depending on whether or not it has a self-loop.  The eigenvalues of a reducible matrix are the 

union set of the eigenvalues of the adjacency matrices associated with strongly connected 

components (Jain and Krishna, 2003).  Thus, the maximum dominant eigenvalue of the strongly 
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connected components will be the dominant eigenvalue of the whole digraph.  Further, if a 

digraph is composed of only trivial strongly connected components without self-loops, pathway 

proliferation will not occur.  This is true of all acyclic digraphs.  This suggests an application of 

the dominant eigenvalue: to detect the presence of cycles (Jain and Krishna, 2003): 

1. if λ1(A) = 0, then A has no cycles;  

2. if λ1(A) = 1, then A has at least one cycle and all cycles occur in strongly 

connected components that have only one simple cycle; and 

3. if λ1(A) > 1, then A has more than one simple cycle. 

Based on an independent development, Fath (1998) interpreted similar results as three classes of 

feedback: 1) no feedback, 2) simple feedback, and 3) cyclic feedback in strongly connected 

networks.  Notice that a graph with λ1(A) ≥ 1 could have a reducible or irreducible adjacency 

matrix, while the adjacency matrix of a graph with λ1(A) = 0 is necessarily reducible with n 

trivial strongly connected components.   

 Similarly, we can summarize three possibilities for our interpretation of the dominant 

eigenvalue as a measure of pathway proliferation in digraphs: 

1. λ1(A) = 0: as m  ∞ the number of pathways between two nodes declines to zero; 

2. λ1(A) = 1: as m  ∞ the number of pathways between nodes in a strongly connected 

component remains constant; and 

3. λ1(A) > 1: as m  ∞ the number of pathways between nodes in at least one strongly 

connected component (Kα) increases without bound at an asymptotic rate equal to 

λ1(Kα) where max(λ1(Kα)) = λ1(A).   
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3.2.2 BOUNDS AND EXPECTED VALUES OF PATHWAY PROLIFERATION 

Given that λ1(A) is the asymptotic rate of pathway proliferation in strongly connected 

digraphs, it would be useful to know its theoretical bounds and expected value.  Matrix theory 

bounds the dominant eigenvalue of a non-negative matrix by the minimum and maximum 

column (row) sum, which in the context of directed graphs is the minimum and maximum out-

degree (in-degree) where equality holds only if  (Seneta, 1973; Berman and Plemmons, 

1979).  Thus, 

outin kk =

( ) ( ))kmax(),kmax(min)A()kmin(),kmin(max out
j

in
j1

out
j

in
j ≤λ≤ .  In a strongly 

connected digraph with more than one node, all nodes must have at least one and a maximum of 

n incoming and outgoing links.  Therefore, n)A(1 1 ≤≤ λ  for a strong digraph.  As stated 

previously, a trivial component with no self loops will have λ1(Kα) = 0.  A complete graph will 

have λ1(A) = n (allowing self loops).  Notice that in the binary matrix A, λ1(A) cannot take 

values between 0 and 1.   

What is the expected value of λ1(A)?  In undirected random graphs G with A = (aij) where 

aij = aji = 1 with probability p (0 < p < 1) and aij = aji = 0 with probability (1–p), Juhász proved 

that p
n

)A(lim 1

n
=

λ
∞→

 with probability 1 (Cvetkovic and Rowlinson, 1990).  This implies that λ1(A) 

~ n*p in the limit of large n; therefore, λ1(A) is an approximation of the number of undirected 

edges in A.  While a random graph is not necessarily connected, a result by Erdős and Rényi 

(1959; 1960) shows that the fraction of nodes connected in a single component increases rapidly 

when the average link density exceeds unity.  In contrast to random graphs with a Poisson degree 

distribution, λ1(A) in random graphs with a power-law distribution of node degrees increases 

with ~ n¼ (Farkas et al., 2001; Goh et al., 2001), and may be further modified by introducing a 

hierarchic modularity to the network topology (de Aguiar and Bar-Yam, 2005).  While random 
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graphs are well-studied, properties of random digraphs are less well-known.  Similar to random 

graphs, the in-degree and out-degree of random digraphs is known to have a Poisson distribution, 

and when link density is greater than unity the expected size of the largest strongly connected 

component increases rapidly (Karp, 1990; Luczak, 1990; Barbosa et al., 2003).  We are unaware 

of known results about the spectra of random directed graphs.   We numerically verified that 

 remains plausible for random directed graphs by determining the largest 

eigenvalue in an ensemble of 99,000 random digraphs (50 from each combination of n = {2, 3, 

…,100} and p={0.05, 0.10,0.15,…,1}).  Our results indicate that λ1(A) ~ n*C = L/n, where C = 

L/n2 is an estimate of p (Figure 3.2).  As either L increases or n decreases the residual error 

decreases.  We conclude that in random digraphs as in undirected random graphs, λ1(A) is 

largely determined by the combination of the number of nodes and number of direct connections; 

pattern of connections has a minor influence.  In digraphs with a more structured topology – such 

as those with power-law in-degree or out-degree distributions or modularity – we might expect 

λ1(A) to deviate from L/n as it does in undirected graphs, though this remains to be explored. 

p*n~)A(1λ

In ecological networks where n is the number of species (functional groups, etc.) and L is 

the number of direct transactions, the rate of pathway proliferation will be heavily influenced by 

species richness and direct link abundance.  However, the results of Farkas et al. (2001) and Goh 

et al. (2001) suggest that if the degree distributions are skewed, as has been demonstrated for 

some food-webs (Dunne et al., 2002b; Montoya and Sole, 2002; Williams et al., 2002), or the 

networks contain other types of order such as modularity, then the residual error 

n/L)A(d 1 −λ=  may be larger than expected from random graphs.  

In summary, pathway proliferation defined as the tendency for the number of pathways 

between any two nodes to increase geometrically without bound as pathway length increases 1) 
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occurs if there is at least one cycle or feedback in the graph (i.e., does not occur in acyclic 

networks), 2) the proliferation rate, indicated by the dominant eigenvalue λ1(A), is identical 

among nodes within a strongly connected component, but can vary between strongly connected 

components within a network, and 3) though topology can be a factor, the proliferation rate is 

heavily influenced by the number of nodes and number of direct links.  In addition, networks 

composed of α non-trivial strongly connected components Ki (i = 1,…, α) have a form of 

structural modularity that may be functionally significant to the complex systems being modeled.   

3.3 MODULARITY AND PATHWAY PROLIFERATION IN EXAMPLE FOOD-

WEBS 

In this section we build on our conceptual and mathematical developments by applying 

the theory to determine the pathway proliferation rates in 17 of the largest empirical food-webs 

currently available (Table 3.1).  Five of the food-webs are terrestrial including Coachella Valley 

(Polis, 1991), St. Martin Island Caribbean Island (Goldwasser and Roughgarden, 1993), the El 

Verde tropical rain forest (Waide and Reagan, 1996), a grassland in the United Kingdom 

(Martinez et al., 1999), and a food-web associated with the Scotch Broom plant (Memmott et al., 

2000).  Three food-webs are from freshwater habitats: Skipworth Pond (Warren, 1989), Bridge 

Brook Lake (Havens, 1992),  Little Rock Lake (Martinez, 1991), Canton Creek, and Stony 

Stream (Townsend et al., 1998).  Seven of the food-webs represent marine or oceanic habitats: 

Chesapeake Bay (Baird and Ulanowicz, 1989), St. Marks Estuary (Christian and Luczkovich, 

1999), Ythan Estuary without (1991) and with (1996) its parasite community (Hall and Raffaelli, 

1991; Huxham et al., 1996), the Benguela current (Yodzis, 1998), a small Caribbean reef (Opitz, 

1996), and the northeastern United States continental shelf (Link, 2002).  Following accepted 

protocol, original food-webs were modified such that any species or functional group with 
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identical predators and prey were grouped as a “trophic species” to reduce methodological bias 

in the data (Yodzis, 1982; Cohen et al., 1990; Pimm et al., 1991; Yodzis and Winemiller, 1999).  

These food-webs have been the subject of much recent network analysis (Williams and Martinez, 

2000; Dunne et al., 2002b; Dunne et al., 2002a; Williams et al., 2002; Dunne et al., 2004) which 

has previously reported their number of trophospecies or nodes n,  connectance C = L/n2, the 

proportion of basal species %B ( = 0), proportion of intermediate species %I (  >0) , 

proportion of top species %T ( = 0), and link density L/n.  We reproduce this basic network 

information in Table 3.1 for comparison.  In addition, Dunne et al. (2002b; 2002a) showed that 

several have skewed degree distributions (i.e., power-law, exponential, etc). 

in
ik in

ik , out
ik

out
ik

We first identified, enumerated, and characterized all strongly connected components 

(Kα), including their rates of pathway proliferation and damping ratio, in these food-webs.  We 

envisioned three possible outcomes.  If food-webs were adequately modeled by random digraphs 

then we would expect each web to have one giant strongly connected component encompassing 

most if not all of the nodes with a single pathway proliferation rate close to link density  λ1(A) ~ 

L/n.  This seemed unlikely given the known skewed degree distributions and evidence that 

ecological processes construct non-random topologies (Cohen et al., 1990; Williams and 

Martinez, 2000), despite arguments to the contrary (Kenny and Loehle, 1991).  A second 

possibility is based on the observation that most early food-webs were acyclic (Cohen et al., 

1990).  Thus, these food-webs might be acyclic, containing no non-trivial strongly connected 

components.  In this case, pathway proliferation would not occur and λ1(A) = 0.  A final 

possibility is that the food-webs would tend to have one or more strongly connected components 

and multiple pathway proliferation rates.  This outcome would support the hypothesized 
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modularity of ecological systems which is thought to increase system stability (May, 1972; 

Pimm and Lawton, 1980; Yodzis, 1982; Krause et al., 2003).   

In Section 3.2 we hypothesized that the absolute difference between the dominant 

eigenvalue and its expected value in random digraphs (L/n) might be a useful indicator of the 

significance of network topology.  To assess this hypothesis, we used Monte Carlo simulations to 

determine if n/L)A(d 1 −λ=  was larger than expected.  We had two scales of analysis: whole 

food-web and non-trivial strongly connected components.  For both, we constructed 1001 

uniform random digraphs with n nodes and where each possible link was connected with 

probability p equal to the original network’s connectivity (p = C).  We assessed statistical 

significance by determining the fraction of random digraphs in which d was equal or greater than 

observed in our network of interest, Pr(d).  Assuming a significance level of α = 0.05, Pr(d) < 

0.05 implies d is statistically significant.   

When applied to the entire food-web, a significant difference with the null model implies 

that topological factors beyond species and link richness are significant in determining the whole 

system dominant eigenvalue.  This could be the size or frequency of strongly connected 

components within the network, as suggested by the analysis in Section 3.2, or perhaps a skewed 

degree distribution.  If the food-webs had more than one non-trivial component, we expected the 

deviation to be large. 

As for the whole food-web, a significant deviation of d indicates the significance of 

network topology in the strongly connected components.  However, given that they are 

irreducible by definition, a significant deviation of d within a component must indicate the 

significance of another element of topology, such as the degree distribution.    

All analyses were conducted using MATLAB 6.5 (The MathWorks, Inc., Release 13).    
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3.3.1 RESULTS 

Food-webs included in this study range in size from 25 to 155 trophospecies and 3% to 

32% connectance (Table 3.1).  They tend to have a large proportion of intermediate species (i.e., 

those with  and ), although the two stream food-webs are notable exceptions.  

Ten of the 17 food-webs examined contained at least one non-trivial strongly connected 

component; six had two.  Five of the remaining food-webs had a dominant eigenvalue of unity, 

implying that at least one node contained a self-loop.  Our results reveal that the majority of 

these food-webs have at least one directed cycle, contrary to earlier food-web theory (Cohen et 

al., 1990).   

0kin
j > 0k out

j >

While the majority of the food-webs express strongly connected component modularity, 

the degree of species involvement varies.  In food-webs that have a non-trivial strongly 

connected component, the proportion of the original nodes involved ranges from 2% in the two 

Ythan Estuary food-webs to 60% in the Caribbean reef model.  Recall that the definition of a 

strongly connected component excludes nodes that have no inputs or no outputs. This effectively 

excludes all basal ( ) and top consumer ( ) species from strongly connected 

components such that the number of species in strongly connected components is limited by the 

number of intermediate species.  This may be a factor in why the two stream food-webs and the 

Scotch Broom food-web contain no non-trivial components.    

0kin
j > 0k out

j >

The absolute difference between the dominant eigenvalue of the entire food-web and its 

expected value based on random digraphs of the appropriate size and connectance 

( n/L)A(d 1 −λ= ) ranged from a minimum of 0.5 for the El Verde rainforest to a maximum of 

12.9 for the NE US shelf food-web (Table 3.1).  In all cases, this difference was significantly 

different from the random digraph null model, indicating that topology is a significant factor in 
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determining λ1(A).  This result is consistent with the presence of one or more small non-trivial 

components and acyclic digraphs.  Our results provide another line of evidence suggesting that 

the ecological processes that create food-webs lead to more ordered network topologies; random 

digraphs are not good models for these systems.       

Inspection of the strongly connected components reveals a diversity of topologies (Table 

3.2).  The largest strongly connected component, with seventy trophospecies occurs in the El 

Verde rainforest model; although it is the least well connected (13%), it still has the largest rate 

of pathway proliferation (λ1(A) = 10.25).  In contrast, ten of the sixteen strongly connected 

components have four or fewer species.  Five of the strongly connected components only contain 

two trophospecies, requiring a single simple cycle of path length 2 (e.g., j  i  j).  While the 

two strongly connected components in the Coachella Valley, Skipworth pond, and Benguela are 

about the same size, one of the two components in Little Rock Lake, Caribbean reef, and NE US 

shelf is substantially larger than the other.  Table 3.3 lists the trophospecies in the two strongly 

connected components of the Coachella Valley.    

All strongly connected component dominant eigenvalues have a multiplicity of one, so 

the adjacency matrices associated with the component subdigraphs are primitive.  Therefore, the 

dominant eigenvalues represent the strongly connected component asymptotic rates of pathway 

proliferation.  These range from 1.62 in strongly connected components of the two Ythan 

Estuary food-webs to 10.25 in the large El Verde rainforest strongly connected component and 

generally increase with link density as would be expected in random digraphs.  However, half of 

the strongly connected components have a statistically significant difference between the 

dominant eigenvalue and link density including Coachella Valley (K1 and K2), El Verde 

Rainforest (K1), Little Rock Lake (K1), Benguela (K2), Carribian Reef (K2), and NE US shelf (K1 
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and K2).  The topological arrangement of species and links in these three strongly connected 

components influences their rate of pathway proliferation; the others are largely determined by 

their species and link richness.      

Again, the damping ratio is an index of the speed of convergence to the asymptotic rate 

of pathway proliferation; a larger ratio indicates faster convergence.  Five of the strongly 

connected components are completely connected.  They have a pathway proliferation rate equal 

to their trophospecies richness and an undefined damping ratio because their second eigenvalues 

are zero.  In these cases the asymptotic rate of pathway proliferation is achieved instantaneously.  

The other damping ratios range from 1.69 in K2 of the NE US Shelf to 4.41 in K1 of the same 

food-web.  Transient dynamics of the pathway proliferation rate, determined by the smaller 

eigenvalues, are more influential in NE US shelf (K2).  Its pathway proliferation rate does not 

converge until a pathway length of nearly twenty-two, while in NE US shelf (K1) the 

proliferation rate converges by a pathway length of eight.   

In summary, the majority of the food-webs we examined contained at least one non-

trivial strongly connected component.  Six food-webs had two non-trivial strongly connected 

components; none had more than two.  The proportion of species involved in a strongly 

connected component ranged from 2% to 60%.  In all cases, the difference between the dominant 

eigenvalue of the food-web and the expected value (L/n) in a random network was significant.  

This difference occurs because the topology of food-webs is non-random; thermodynamic 

processes and species characteristics (e.g., the species niche) combine to form non-random 

structure (Chase and Leibold, 2003).  Within the strongly connected components, the rate of 

pathway proliferation ranged from 1.62 to 10.25 and half were indistinguishable from random 

graphs based on the expected rate of pathway proliferation.   
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3.4 DISCUSSION 

As with any analysis of network models that reveals previously hidden structural 

patterns, we are left with two basic questions.  First, what, if any, significance do these patterns 

hold for our systems of interest?  Are strongly connected components and pathway proliferation 

simply another pretty pattern, another network or food-web statistic to report, or do they impart 

some functional significance?  The second question cannot be divorced from the first; what 

system processes might create these structural patterns?  Are there ecological processes or forces 

that might lead to the development of these structures?  These are not easy questions to answer, 

but in this section we attempt to address them for the presence of strongly connected components 

and pathway proliferation in ecological networks. 

Strongly connected components introduce a form of modularity into network models, 

where modularity is defined as a hierarchical system subdivision into more or less interacting 

subsystems.  Several types of modularity have been proposed in ecological systems.  May (1972) 

hypothesized that ecosystems would have a modular structure based on his investigation of 

Lyapunov stability in randomly assembled ecosystems.  He found that when a system’s species 

were partitioned into blocks of interacting species with few if any connections to other blocks 

greater overall system stability was more likely.  Pimm (1979) termed these blocks of species 

“compartments”, stating that they are “…characterized by strong interactions within 

compartments, but weak interactions among compartments” (p. 145).  Pimm and Lawton (1980) 

concluded from a study of binary empirical food-webs that, while there was evidence species 

were grouped into subsystems largely by habitat, compartmentalization as defined by Pimm was 

an uncommon phenomenon. They noted, however, that a complete test of the hypothesis would 

require knowledge of the strength of interactions, which was absent in their food-web models.  
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Yodzis (1982) remarked that modular organization was an old idea in ecology, providing the 

guild concept (Root, 1967) as an example.  He applied the dominant clique idea from graph 

theory to identify another type of modularity in food-webs.  He defined “…a clique as a set of 

species in a given ecosystem with the property that every pair in the set has some food resource 

in common, and … a dominant clique as a clique which is contained in no other clique” (p. 552).  

More recently, Krause et al. (2003) used a methodology developed to identify cohesive 

subgroups in social network analysis to classify another type of modularity in food-webs.  They 

demonstrated that this type of organization increased system stability to species deletion by 

localizing the effect within a module.  The dominant ecological hypothesis is that food-web or 

ecosystem modularity increases overall system stability by localizing interactions within 

modules.  Given the static, binary, presence-absence information of food-webs in our study we 

were unable to meaningfully test this hypothesis; stability is inherently a dynamic concept.  

Known issues with food-web model construction further make this hypothesis difficult to resolve 

(Cohen et al., 1993; Pollis and Strong, 1996).  Empirical food-web models usually do not 

indicate interaction strength or the temporal and spatial variation of the interactions.  These 

details are expensive to acquire.   

Despite the challenge of assessing their effect on system stability, strongly connected 

components in ecological networks appear to be important functional elements of system 

organization and provide new insights about species participating in them.  By definition 

(Section 3.2), there is minimally one simple cycle that encircles all nodes in the strongly 

connected component.  This provides at least one channel for cybernetic feedback (positive or 

negative) to propagate among species in the module (Patten and Odum, 1981; DeAngelis et al., 

1986).  In food-webs it is reasonable to assume that each predatory species directly benefits by 
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its consumption of prey.  This establishes an indirect mutualism spanning the strongly connected 

component.  It also provides the necessary conditions for the strongly connected components of 

food-webs to function as autocatalytic cycles – systems that catalyze their own production 

(Maynard Smith and Szathmâry, 1995; Ulanowicz, 1997).   Autocatalytic cycles are an essential 

element of metabolism in chemical and living systems and may have played a role in the origin 

of life (Maynard Smith and Szathmâry, 1995).  Maynard Smith and Szathmâry (1995) described 

autocatalytic cycles as a force for cooperation among the member species and efficient 

information integrators.  Ulanowicz (1997) identifies several emergent properties autocatalytic 

cycles may possess, including centripetality, persistence, and autonomy.  Centripetality is the 

tendency of the cycle to attract more of the energy–matter flux of the system. If any member 

species becomes more efficient at using its resources or better able to acquire new resources such 

that its population increases, this positive change tends to cascade through the module, 

collectively benefiting the populations of all species involved.  Autocatalytic cycles tend to 

persist because their general form can be maintained in a system despite fluctuations in the 

interaction strengths and possible element replacement.  In food-webs this implies that when a 

trophically similar species is introduced to the system, if it is more efficient or in some way 

ecologically more competitive, it may wholly replace an existing species in the autocatalytic 

cycle, but the cycle remains.  Finally, autocatalytic cycles can establish a degree of autonomy 

because species in the cycle can actively influence at least a portion of their input environment.  

In this sense, species in strongly connected components of food-webs are involved in ecosystem 

engineering (Jones et al., 1997) and niche construction (Laland et al., 1999; Odling-Smee et al., 

2003).  Ulanowicz (1986; 1997) further argues that the autocatalytic nature of cycles in 

ecosystems makes them a principal agent in ecosystem growth and development.    
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Maynard Smith and Szathmâry (1995) remarked that autocatalytic cycles are sensitive to 

cheaters or parasites that feed off the strongly connected component without participating in the 

cycle.  Top predators feeding on species in a strongly connected component or a downstream 

strongly connected component might function as parasites in this sense.  Perhaps this is why 

strongly connected components do not occur in all the food-webs analyzed.  This and the 

tendency for centripetality may explain why there are fewer than three strongly connected 

components in these food webs.  We are unable to assess these possibilities with these data, 

however, because the differences may simply reflect disparities in food-web modeling decisions.    

Pathway proliferation rates of strongly connected components provide additional 

information about the module.  Each additional link in a strongly connected component beyond 

those that form the defining cycle introduces another embedded simple cycle.  This lowers the 

maximal distance between nodes in the module, increases the potential pathways for energy–

matter flux, tends to increase the rate of pathway proliferation, and leads to the unbounded 

growth of pathways as length increases.  In some cases, the rate of pathway proliferation will not 

increase as expected with the number of links.  For example, half of the strongly connected 

components identified in our food-webs had pathway proliferation rates that were significantly 

different from the expected rate based on random graphs with a Poisson degree distribution.  

This suggests that module topology differs from what we would expect from a random 

generating process.  As mentioned earlier, we would not necessarily expect the ecological 

processes structuring food-webs to be random.  Species characteristics such as metabolic 

requirements, food preferences, capture ability and handling time, as well as other niche 

requirements and natural history constraints will proximately influence the choices of “who eats 

whom” and how much.  The emergent properties of autocatalytic cycles and ecosystems more 
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generally may also provide whole-system constraints.  Perhaps the interesting question is not, 

why the eight strongly connected compartments did not match the random expectation, but why 

the other half did?   Notice that the strongly connected compartments with non-random 

topologies were the largest modules, while the eight strongly connected components with 

topologies indistinguishable from random digraphs involved only two or three trophospecies.  

The universe of possible topologies is much smaller in these small and well-connected (0.0.75 ≤ 

C ≤ 1.0) modules, making the ecologically created topologies reflected in the food-webs more 

likely.  Five of these modules were completely connected, generating only one possible 

arrangement pattern.  The eight strongly connected components with apparently non-random 

topologies were less well connected (0.13 ≤ C ≤ 0.78), generating a much larger universe of 

possible topologies.  In six cases the pathway proliferation rate was significantly less than 

expected, but in the large strongly connected component of the El Verde rainforest and the 

smaller module of the Caribbean Reef, the pathway proliferation rate was more than expected.  

At this point, we are unable to provide a satisfactory explanation for these differences.           

In our discussion thus far, we have been interchanging food-webs and ecosystems.  It is 

important to recognize, however, that food-webs are a subset of a broader class of ecosystem 

models of energy–matter flow.  Food-webs are generally defined by the relation “who eats 

whom” that is one process generating energy–matter flux, while ecosystem flow–storage models 

typically trace a conserved flow unit (e.g., energy, nitrogen, phosphorus) through the system, 

regardless of the process producing the flow.  Thus, non-trophic ecological processes such as 

excretion and death are captured in flow–storage models, revealing a different picture of 

ecosystem organization.   
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Pathway proliferation influences the development and significance of indirect flows in 

ecosystem flow–storage models.  Indirect flows are an important aspect of the ecological 

significance of the strongly connected components, so here we take a closer look.  Indirect flows 

are derived from two fundamentally distinct types of pathways: chains (e.g., 5  6  7 in 

Figure 3.1A) and cycles (e.g., 1  3  1 in Figure 3.1A).  Indirect flows in chains are limited 

by transfer efficiencies and chain length.  In cycles, the number and length of pathways are 

unlimited such that indirect flows are only limited by transfer efficiencies reflecting energy–

matter dissipation and export.  As ecosystems are open thermodynamic systems, shorter indirect 

pathways individually will tend to carry larger indirect flows than longer indirect pathways.  A 

faster rate of pathway proliferation λ1(A) implies that there will be more shorter indirect 

pathways, increasing the possibility that the magnitude of indirect flows will surpass that of 

direct flows.  Thus, within a strongly connected component the large number of indirect 

pathways will tend to carry a large fraction of the flow between species (nodes).   

More generally, λ1(A) indicates the potential for direct and indirect energy, matter, and 

information transmission between compartments in a strongly connected component.  Realized 

transmission rates are dependent on the realized use of each pathway.  Previous ecosystem 

network analyses reveal some of the system-level consequences of differential pathway use 

(Patten, 1985a; Ulanowicz, 1986; Higashi and Patten, 1989; Fath and Patten, 1998; Fath and 

Patten, 1999; Fath, 2004), but there is much left to learn about this subject.  The interplay of this 

potential and realized network structure is an interesting, important topic for understanding the 

organization and transformation of complex adaptive systems like ecosystems. 

We conclude that the strongly connected components and pathway proliferation are 

ecologically relevant phenomena because they provide novel insights about the system of 

 

70



 

interest.  Without knowing the strength of interactions or energy–matter flux rates, the presence 

of these structural features suggests groups of species functionally integrated by indirect effects 

mediated by autocatalytic cycles.  They portend the possibility of integral species relationships 

that are shifted toward more positive associations and the possibility of the dominance of indirect 

flows.  In some cases, apparent negative interactions such as predation or competition may 

become more positive through indirect interactions mediated by the autocatalytic cycles of the 

strongly connected components.       
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3.7 TABLES 

Table 3.1: Topological properties of 17 empirical food-webs 

Habitat Food Web Original Reference Taxa† n† C† %B† %I† %T† L/n† λ1(A) d #K %K
Terrestrial Coachella Valley Polis 1991 30 29 0.31 10 90 0 9.03 6.35 2.7 0.001 * 2 59

St. Martin Island Goldwasser & Roughgarden 1993 44 42 0.12 14 69 17 4.88 0.00 4.9 0.001 * 0 0
El Verde Rainforest Waide & Reagen 1996 156 155 0.06 18 69 13 9.74 10.25 0.5 0.001 * 1 45
UK Grassland Martinez et al. 1999 75 61 0.03 18 69 13 1.59 0.00 1.6 0.001 * 0 0
Scotch Broom Memmott et al. 2000 154 85 0.03 1 40 59 2.62 1.00 1.6 0.001 * 0 0

Lake/Pond Skipworth Pond Warren 1989 35 25 0.32 4 92 4 7.88 3.00 4.9 0.001 * 2 20
Bridge Brook Lake Havens 1992 75 25 0.17 32 68 0 4.28 2.00 2.3 0.001 * 1 8
Little Rock Lake Martinez 1991 181 92 0.12 13 86 1 10.84 6.20 4.6 0.001 * 2 26

Stream Canton Creek Townsend et al. 1998 108 102 0.07 53 22 25 6.83 1.00 5.8 0.001 * 0 0
Stony Stream Townsend et al. 1998 112 109 0.07 56 27 17 7.61 1.00 6.6 0.001 * 0 0

Estuary Chesapeake Bay Baird & Ulanowicz 1989 33 31 0.07 16 52 32 2.19 1.00 1.2 0.001 * 0 0
St. Marks Estuary Christian & Luczkovich 1999 48 48 0.10 10 80 10 4.60 1.00 3.6 0.001 * 0 0
Ythan Estuary, 1991 Hall & Raffaelli 1991 92 83 0.06 9 54 37 4.76 1.62 3.1 0.001 * 1 2
Ythan Estuary, 1996 Huxham et al. 1996 134 124 0.04 4 56 40 4.67 1.62 3.1 0.001 * 1 2

Marine Benguela Yodzis 1998 29 29 0.24 7 93 0 7.00 3.00 4.0 0.001 * 2 21
Carribean Reef, small Opitz 1996 50 50 0.22 6 94 0 11.12 8.63 2.5 0.001 * 2 60
NE US Shelf Link 2002 81 79 0.22 3 94 4 17.76 4.87 12.9 0.001 * 2 39

Pr(d)

 
Taxa refers to the original number of species; n is the number of nodes or trophospecies; C =  L/n2 is connectance; %B, %I and % T 
are the proportions of basal (indegree = 0), intermediate (indegree & outdegree > 0), and top (outdegree = 0) trophospecies; L/n is link 
density; λ1(A) is the dominant eigenvalue of the entire foodweb; d = | λ1(A) – L/n|; Pr(d) is the fraction of an ensemble of 1001 
random digraphs in which d is greater than or equal to that observed in Kα; * indicates statistically significant Pr(d) at α = 0.05; #K is 
the number of non-trivial strongly connected components; %K is the percent of species in a non-trivial strongly connected component.  
† marks topological properties previously reported for these food-webs (Williams and Martinez, 2000; Dunne et al., 2002a; Dunne et 
al., 2004).  
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Table 3.2: Topological properties of strongly connected components in 17 empirical food webs 

Model Ka n L C L/n λ1(Ka) mult(λ1) r d
Coachella Valley 1 11 71 0.59 6.45 6.35 1 3.40 0.1 0.001 *

2 6 22 0.61 3.67 3.56 1 3.56 0.1 0.001 *
El Verde Rainforest 1 70 633 0.13 9.04 10.25 1 2.43 1.2 0.001 *

Skipworth Pond 1 3 9 1.00 3.00 3.00 1  -- 0.0 1.001
2 2 4 1.00 2.00 2.00 1  -- 0.0 1.001

Bridge Brook Lake 1 2 4 1.00 2.00 2.00 1  -- 0.0 1.001
Little Rock Lake 1 21 167 0.38 7.95 6.20 1 2.42 1.7 0.001 *

2 3 9 1.00 3.00 3.00 1  -- 0.0 1.001
Ythan Estuary, 1991 1 2 3 0.75 1.50 1.62 1 2.62 0.1 0.212
Ythan Estuary, 1996 1 2 3 0.75 1.50 1.62 1 2.62 0.1 0.226

Benguela 1 3 9 1.00 3.00 3.00 1  -- 0.0 1.001
2 3 7 0.78 2.33 2.25 1 4.05 0.1 0.007 *

Carribean Reef, small 1 2 3 0.75 1.50 1.62 1 2.62 0.1 0.217
2 28 244 0.31 8.71 8.63 1 4.11 0.1 0.001 *

NE US Shelf 1 4 11 0.69 2.75 2.88 1 4.41 0.1 0.003 *
2 27 243 0.33 9.00 4.87 1 1.69 4.1 0.001 *

Pr(d)

 
 
Kα indicates the non-trivial strongly connected component number; n is the number of nodes (trophospecies), L is the number of links; 
C = L/n2 is connectance, L/n is the link density, λ1(Kα) is the dominant eigenvalue of Kα, mult(λ1) is the multiplicity of the dominant 

eigenvalue, 
)K(
)K(

2

1

α

α

λ
λ

=ρ  is the damping ratio (-- indicates ρ is undefined because 0)K(2 =λ α ), n/L)A(d 1 −λ=  is the absolute 

difference between the dominant eigenvalue and link density, Pr(d) is the fraction of an ensemble of 1001 random digraphs in which d 
is greater than or equal to that observed in Kα, and * indicates statistically significant Pr(d) at α = 0.05. 
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Table 3.3: Trophospecies in the two non-trivial strongly connected components of Coachella Valley food-web 

n Trophospecies n Trophospecies
21 primarily herbivorous mammals and birds 11 small arthropod predators
22 small omnivorous mammals and birds 12 medium arthropod predators
26 primarily carnivorous lizards 13 large arthropod preadators
27 primarily carnivorous snakes 14 facultative arthropod predators
28 large primarily predacious birds 15 life-history arthropod omnivore
29 large primarily predacious mammals 16 spider parasitoids

17 primary parasitoids
18 hyperparisitoids
23 predacious mammals and birds
24 arthropodivorous snakes
25 primarily arthropodivorous lizards

K1 K2
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3.8 FIGURE LEGENDS 

Figure 3.1: A) Example digraph D with strongly connected components K1 = {1,2,3}, K2 = {4},  

K3 = {5}, K4 = {6}, K5 = {7}, B) adjacency matrix associated with the digraph D (dotted 

lines denote strongly connected components), and C) plot demonstrating pathway 

proliferation from node 3 to 1, as the number of pathways  increases as pathway 

length m increases.  Transient effects created by smaller eigenvalues are visible in the 

first ten pathway lengths, but the rate of pathway proliferation has nearly converged to 

λ1(K1) = 1.32 by a pathway length of 16.   

)m(
1,3a

Figure 3.2: Dominant eigenvalue in random digraphs.  Points show the relationship between 

dominant eigenvalues λ1(A) and link density L/n in 99,000 uniform random digraphs 

where aij = 1 with probability p and aij = 0 with probability (1–p) (50 replicates of each 

combination of n = {2,3,…,100} and p = {0.05, 0.10, …, 1} ).  The line indicates the 

expected λ1(A) = L/n relationship.  The inset graph shows the distribution of residuals 

indicating that as L/n increases it becomes a better predictor of λ1(A). 
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Figure 3.1 
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Figure 3.2: Dominant Eigenvalue in Random Digraphs 
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CHAPTER 4 

TEMPORAL VARIATION OF INDIRECT EFFECTS IN A SEVEN-COMPARTMENT 

MODEL OF NITROGEN FLOW IN THE NEUSE RIVER ESTUARY, USA:                     

TIME SERIES ANALYSIS1

1 HEADING 1 

2 HEADING 2 

3 HEADING 3 

4 HEADING 4 

 

                                                 

1 Borrett, S.R., S.J. Whipple, B.C. Patten, R.R. Christian, Accepted by Ecological Modelling.   
Reprinted here with permission of publisher.   
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ABSTRACT 

Indirect effects, the ability of one element in a system to impact another without direct 

interaction, are critical components of complex adaptive systems.  Network Environ Analysis 

(NEA) is an environmental extension of economic Input-Output Analysis that characterizes and 

quantifies indirect effects transmitted by a specific currency (e.g., carbon, nitrogen) within a 

steady state system.  Previous NEA results suggest that indirect effects tend to dominate direct 

effects in ecosystems.  Although steady state models may be useful, ecologists are often 

interested in system dynamics.  In this article, we use NEA to investigate the temporal dynamics 

of indirect effects in sixteen steady state models of nitrogen cycling in the Neuse River Estuary, 

USA.  These models were originally constructed by Christian and Thomas (2003. Network 

analysis of nitrogen inputs and cycling in the Neuse River Estuary, North Carolina, USA. 

Estuaries 26:815-828.).  Our work had two primary objectives: 1) describe and quantify the 

temporal dynamics of indirect flows and 2) identify the importance of model factors in 

determining the magnitude of indirect flows.  Our results indicate that indirect flows transmitted 

by the network of nitrogen transactions, especially microbial transformations, dominated direct 

flows in the Neuse River Estuary between spring 1985 and winter 1989.  When we examined the 

indirect flow index (ratio of indirect to total system throughflow), we were surprised by the 

relatively small amount of temporal variation within the Neuse River Estuary.  In all seasons, 

indirect flow was more than 80% of TST, and there was no significant interannual variation.  Our 

analysis also revealed 1) no clear relationship between boundary or direct flow and indirect flow, 

but 2) a strong association between cycled and indirect flow.  We conclude that while an increase 

in boundary, direct, and cycled flows can influence indirect flows, in the Neuse River Estuary 

models indirect flows are predominantly due to cycling.  If nitrogen loading had been reduced 
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during our study period, this system likely would have remained eutrophic for an extended 

period of time.  If we assume the system remained similar in 1997, we would expect the 

legislated reduction of nitrogen loading to have little immediate effect, although this action will 

be important for long–term change.  Dominance of indirect flow due to cycling makes this 

system state relatively difficult to change rapidly by external forcing.  In this sense the indirect 

effects stabilize the system, making it more resistant to external perturbations, though it may be 

more sensitive in the long–term.   
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“We are far less powerful than we think, but have much more impact than we perceive.” 

Mitchel Thomashow (2002) 

4.1 INTRODUCTION 

Indirect effects, the ability of one species or system element to influence another without 

directly interacting with it, appear to have a significant role in the organization and 

transformation of biological systems.  They have long been recognized by biologists (Darwin, 

1959), and the challenge they pose for environmental management helped spark the 

environmental movement (Carson, 1962).  Though challenging to investigate, ecologists are 

increasingly recognizing the significance of indirect effects as components of ecological 

interactions (Patten, 1983; Andrewartha and Birch, 1984; Patten, 1984; Miller and Kerfoot, 

1987; Strauss, 1991; Wootton, 1994, 2002) and evolution (Miller and Travis, 1996; Laland et al., 

1999; Odling-Smee et al., 2003).  Wootton (2002) recently argued that indirect effects are “…a 

fundamental cause of ecosystem complexity.”  In this article, we characterize the temporal 

variation of indirect effects in sixteen seasonal models of nitrogen cycling for the Neuse River 

Estuary, USA.   

Part of the challenge of analyzing indirect effects is that there appear to be multiple types 

that ecologists have struggled to classify and empirically demonstrate (Miller and Kerfoot, 1987; 

Strauss, 1991; Wootton, 1994; Abrams, 1995).  Here, we adopt the categorization scheme of 

Wootton (1993; 1994; 2002) that begins with two categories: interaction chains and interaction 

modifications.  Interaction chains occur when one species impacts another by affecting a third.  

This occurs by linking two or more direct interactions together.  For example, in the chain A  

B  C, A indirectly influences C by directly influencing B.  As ecologists are often interested in 

the abundance or density of species, these have also been labeled ‘density mediated interactions’ 
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(Abrams et al., 1996).  Several commonly studied ecological interactions arise from this type of 

indirect interaction including keystone predation, trophic cascades, apparent competition, 

indirect mutualisms, and exploitative competition (Wootton, 2002).  Interaction modifications, 

on the other hand, occur when a species modifies the interaction between two species.  At least 

two types of interaction modifications have been identified.  ‘Trait–mediated indirect effects’ 

(Abrams, 1995; Abrams et al., 1996; Peacor and Werner, 1997; Bolker et al., 2003; Luttbeg et 

al., 2003; Werner and Peacor, 2003) occur when one species changes the traits or behavior of a 

second that alters how it interacts with a third.  For example, Pacific killifish (Fundulus 

parvipinnis) parasitized by the trematode Euhaporchis californiensis tend to exhibit conspicuous 

behavior making them more susceptible to predation by avian predators than unparasitized 

killifish (Lafferty and Morris, 1996).  ‘Environment–mediated indirection modifications’ occur 

when one species changes the environmental context in which two species interact.  Ecosystem 

engineers, such as beavers that construct ponds providing habitat for aquatic organisms, are one 

example (Jones et al., 1997). 

In ecosystems, organisms and elements of their abiotic environments are coupled together 

through an intricate network of energy–matter exchanges (Patten et al., 1976; Ulanowicz, 1986; 

Higashi and Burns, 1991).  While observation and analysis of these transaction networks cannot 

identify specific mechanisms or depict all types of indirect interactions (Loehle, 1990; Wootton, 

1994), they do capture many types of indirect interactions that are reflected in trophic dynamics 

and biogeochemistry (Patten, 1990; Higashi and Burns, 1991).  These include some indirect 

interactions from each of the three broad categories identified earlier.   Therefore, analysis of 

these flow–storage networks may illuminate the consequences of particular system 

organizations, especially the indirect effects mediated by this transaction network.   
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One purpose for developing input–output analysis (IOA) in economics was to trace 

indirect effects through the network of economic transactions (Leontief, 1966).  Network environ 

analysis (NEA) is an environmental application and extension of economic IOA.   Through 

NEA, Patten and colleagues (Patten, 1984, 1985; Higashi and Patten, 1986, 1989; Patten, 1991) 

characterized indirect flows transmitted through the network of energy–matter exchanges in an 

ecosystem.  At the whole-system level, the relative significance of indirect flows is indicated by 

the ratio of indirect to direct flow (Indirect/Direct).  This ratio indicates the significance of 

indirect flows within a system’s environs, which are within system, compartment-specific, input 

and output oriented environments (Patten, 1978, 1981, 1982, 1992).  Previous results suggest that 

the Indirect/Direct flow ratio tends to be greater than unity in model ecosystems, implying that 

indirect effects are dominant (Patten, 1984; Higashi and Patten, 1986, 1989; Patten, 1991; Fath, 

2004).  This has led Patten (in prep.) to hypothesize that the natural world is unified through 

indirect effects.   

Applications of NEA have been limited to steady state models (e.g., Dame and Patten, 

1981; Patten and Matis, 1982; Flebbe, 1983; Gattie et al., 2005).  Though these models can be 

useful, ecologists are often interested in system dynamics.  In this paper we use NEA to 

investigate the temporal dynamics of indirect flows in the Neuse River Estuary.  We take a small 

step toward a true dynamic NEA by investigating both the seasonal and interannual variation in 

indirect effects in a discrete–time sequence of steady state models.  Further, while past work 

indicates that aspects of both system structure and function influence the degree of indirect 

effects (Patten et al., 1990; Patten, 1991; Fath, 2004), the relative importance of various factors is 

unknown.  This knowledge is crucial to our understanding of how indirect effects integrate 

ecological systems and alter their responses to environmental impacts.  The Neuse River Estuary 
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data set provides an opportunity to begin to address these questions.  Understanding the causes 

and consequences of indirect effects is necessary for sustainable management of ecosystems and 

the services they provide, a critical mission for ecological sciences (Palmer et al., 2004; Palmer 

et al., 2005). 

The Neuse is a large river in North Carolina draining a 16,000 km2 watershed.  Water 

leaving the river enters the Neuse River Estuary and then flows into Pamlico Sound.  This 

estuary has received a great deal of political and scientific attention in the last two decades 

because it has become highly eutrophic and at times hypoxic (Christian et al., 1986; Baird et al., 

2004).  In 1997, the State of North Carolina legislated a thirty percent reduction in nitrogen 

loading to the estuary.  In addition, the US EPA required the state to develop a total maximum 

daily load (TMDL) of nitrogen entering the estuary by the summer of 1997.  The sixteen 

seasonal nitrogen models were originally constructed by Christian and Thomas (2000; 2003) as 

part of the larger Neuse River Modeling and Monitoring (ModMon) program to study the 

estuary’s response to new environmental management (Reckhow and Gray, 2000).  Their 

analysis using a complementary type of ecological network analysis indicated that nitrogen 

dynamics in the estuary are dominated by internal recycling (Christian and Thomas, 2003).   

Our first objective was to characterize the temporal dynamics of indirect flows 

transmitted through the nitrogen transaction networks.  We used NEA to describe and quantify 

the indirect flows because it decomposes observed throughflows into their boundary, direct, and 

indirect portions.  Although ecosystems are open thermodynamic systems that eventually 

dissipate imported energy–matter, indirect flows tend to dominant direct because of the large 

number of indirect pathways available in cyclic systems (Patten et al., 1982; Patten, 1985; 

Borrett and Patten, 2003, see Chapters 2 and 3).  As the Neuse River Estuary nitrogen models are 
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cyclic and well connected, we expected indirect flows to be dominant.  We also anticipated the 

proportion of indirect flow to vary seasonally, contributing more in the spring and summer when 

biological activity increases, and less in the winter when biological activity slows and physical 

processes are more pronounced.  River discharge and nutrient loading tend to be high and 

flushing times short during colder months (Christian et al., 1991).  Alternatively, more biological 

activity may decrease the proportion of indirect flow.   

Our second objective was to determine the relative importance of factors determining 

indirect flow in the Neuse models.  Higashi and Patten (Higashi and Patten, 1986; Patten et al., 

1990; Patten, 1991) showed algebraically that the ratio of indirect–to–direct effects should 

increase as model size (number of nodes, n), connectivity (proportion of possible links 

connected, C = L/n2), strength of direct flows (Direct), and magnitude of cycling (Cycled) 

increase.  This algebra, however, does not determine the relative importance of these factors or 

indicate whether this is a complete set of factors.  Other attributes such as network topology 

(Borrett and Patten, 2003, see Chapter 2 and 3) or boundary flow also might be influential.  In 

the model ecosystems we analyzed, network structure (n, C, and topology) was constant for the 

16 seasons, but functional attributes (Direct, Cycled, and Boundary flow) varied.  Given 

Higashi’s algebra, we expected Direct and Cycled flow to significantly influence the magnitude 

of indirect effects.  Further, we expected cycling to be the most significant factor as it establishes 

the feedbacks, amplifying direct flows into indirect components. 

4.2 MATERIALS AND METHODS 

4.2.1 NEUSE RIVER ESTUARY NITROGEN CYCLING MODELS 

For our investigation, we used sixteen seasonal network models of nitrogen cycling in the 

Neuse River estuary from Spring 1985 to Winter 1989 originally constructed by Christian and 
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Thomas (2000; 2003).  Each model has the same basic structure (Figure 4.1), with seven 

compartments (n = 7), 22 within–system observed flows, and boundary loading to and losses 

from each compartment.  Compartments, or network nodes, represent nitrogen storage (mmol N 

m−2) in phytoplankton (PN-Phyto), heterotrophs (PN-Hetero), detritus (PN-Aerobic), sediments, 

dissolved organic nitrogen (DON), nitrate and nitrite (NOx), and ammonium (NH4).  Nitrogen 

flows (mmol N m−2 season−1) are represented by directed arcs in the network.  Each compartment 

has nitrogen imports from upstream and the watershed as well as boundary losses due to 

denitrification and exports downstream into Pamlico Sound.  The sediment compartment has an 

additional boundary loss due to sediment burial.  Baird et al. (1991) suggested this structural 

consistency is critical for the type of model comparisons we make in this paper. 

As reported in Christian and Thomas (2003), nitrogen flow and storage data for the 

models were drawn largely from a four year study of the Neuse River Estuary (Christian et al., 

1991; Christian et al., 1992; Rizzo et al., 1992; Boyer et al., 1993; Boyer et al., 1994; Rizzo and 

Christian, 1996).  The least well known data, including sediment–water column interactions, 

burial, and denitrification, were estimated based on related studies; sediment burial rates were 

adjusted to balance the model to a steady state2 (i.e., inputs equal outputs for each node).  See 

Christian and Thomas (2000; 2003) and Christian et al. (1992) for additional model details.    

 

  

                                                 

2 The model for Summer 1987 was not exactly at steady state.  However, the difference between input and output 

throughflow in NOx
, the only compartment not at steady state, was only 0.9 mmol N m−2 season−1.  Analysis of an 

adjusted model (data not shown) showed this had no significant impact on our results.  
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4.2.2 NETWORK ENVIRON ANALYSIS AND INDIRECT EFFECTS 

4.2.2.1 ENVIRON INDIRECT EFFECTS 

Empirically measured or observed energy–matter flows from compartment j to i 

( , i, j = 1,…, n) in natural systems are comprised of both direct and indirect flows 

(Patten et al., 1976; Whipple and Patten, 1993; Whipple, 1999; Gattie et al., 2005).  NEA (Patten 

et al., 1976; Patten, in prep.) is a family of input–output methods descended from economics 

(Leontief, 1965, 1966) that analytically decomposes observed flows to identify their origins or 

fates within the system of interest (see Fath and Patten, 1999 for review).  NEA includes 

structural analysis for path enumeration as well as functional analyses to investigate flow, 

storage, utility, and control.  In this work, we focused on the output oriented throughflow-

specific flow analysis.  NEA methods are extensively described in the literature (Patten et al., 

1976; Matis and Patten, 1981; Fath and Patten, 1999; Patten, in prep.) and were recently 

collected into a single MATLAB® function to facilitate its application (Fath and Borrett, 2005, 

see Appendix A).  We will briefly review the NEA elements we used, and define the response 

variables for this study.   

)f(F ijnn =×

There are several basic steps to output oriented throughflow-specific flow analysis in 

NEA.  Given the observed intercompartmental flows ( ) and boundary inputs ( ) and 

outputs ( ) of an n node system, we first define the total amount of energy–matter flowing 

into and out of each node as  and  respectively, where 

  at steady state.  Total system throughflow ( ) is a 
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system-level measure of activity and is often used to characterize ecosystem models (Finn, 1976; 

Ulanowicz, 1986).   

In the second step, observed flows (F) are normalized by the donor compartment 

throughflow.  The resultant matrix, , represents the donor-specific direct flow intensities 

from j to i (

nnG ×

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

j

ij
ij T

f
)g(G ).  Elements of G are interpreted as the probability that boundary 

material entering j will flow to i over a direct path (i.e., path length, m = 1).  Next, flow from j to 

i over indirect pathways (m > 1) is determined by raising G to the mth power, Gm.  The elements 

of Gm are interpreted as the fractional transfer coefficient for boundary material entering j 

flowing over all pathways of length m between any j and i.  Finally, total node throughflow is 

recovered by post multiplying the sum of the infinite power series of flow intensities by the 

boundary inflows: 

 ,  (4.1) { { z*GGGIT
Indirect

m2

Direct

1

Boundary
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++= 44 344 21 KK

where  is the matrix multiplicative identity.  In open, dissipative, thermodynamic systems 

like ecosystems, 0 ≤ gij < 1 ( ) and at least one column (or row) sum is less than unity 

ensuring that the dominant eigenvalue of G is less than one (Berman and Plemmons, 1979).  This 

criterion ensures that the power series converges to the transitive closure matrix 

, where (nij) represents the integral (boundary + direct + indirect) 

throughflow from j to i generated by an input to j.  Thus, 

0GI =

j,i∀

1
ij )GI()n(N −−==

NzT = .  The analysis used here only 

incorporates flow over pathways that Higashi and Patten (1989) termed procedurally indirect.  

Pathways with adjacent repeated nodes (e.g., i  i  i  i  j) that create only temporal 

indirectness are included as direct flows. 

 

95



 

 We can rewrite the throughflow decomposition in (4.1) by distributing z across the flow 

intensity partition, and summing the elements of each n×1 resultant vector to derive the 

following restatement in terms of TST: 

 
{ 44 344 21321

IndirectDirectBoundary

z)GIN(GzIzTST ∑∑∑ −−++= . (4.2) 

This equation identifies the dimensionalized flow variables for the whole system scaled by the 

model inputs that we used as response variables: Boundary (∑ Iz ), Direct ( ), and Indirect 

( ).  Dividing both sides of (4.2) by TST generates:   

∑Gz

∑ −− z)GIN(

 
TST

z)GIN(
TST

Gz
TST

z
1 ∑∑∑ −−

++= . (4.3) 

Elements of the right-hand side of (4.3) represent the portion of TST derived from each of the 

three categories of flow.  From (4.2) the ratio of indirect–to–direct flows (Indirect/Direct) can be 

constructed as 

 
∑

∑ −−
=

Gz
z)GIN(

Direct
Indirect . (4.4) 

Indirect/Direct is a system–level indicator of the relative significance of indirect flow in TST.  

To address our first objective, we calculated this ratio and the TST partition in (4.3) for the 

Neuse River Estuary models using a modification of NEA.m (Fath and Borrett, 2005, see 

Appendix A).  Further, we compared the mean indirect flow index 

(
TST

z)GIN(
TST

IndirectIFI ∑ −−
=≡ , 1IFI0 <≤ ), averaging first across seasons, and second across 

four years.  Year classes were constructed by grouping spring, summer, and fall of a year with 

the following winter (e.g., year class 1985, yc1985 = {Spring 1985, Summer 1985, Fall 1985, 

and Winter 1986}).  Following a Kolmogorov-Smirnov test to insure IFI was normally 
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distributed, we analyzed statistical significance of season and year class using a two-way 

ANOVA (Dalgaard, 2002).  When necessary, multiple pairwise comparison t-tests were 

evaluated with Bonferroni adjusted p-values.  We calculated all statistics with R (version 1.7.3, R 

Development Core Team, 2004).  

Finn (1976) proposed an alternative partition of TST into portions from acyclic 

throughflow and cycled flow.  Cycled flow, calculated as Cycled , was an 

additional response variable in this study.  The Finn cycling index (FCI), the ratio of cycled flow 

to TST, is another common metric used to characterize ecosystem organization.  Allesina and 

Ulanowicz (2004) show that FCI does not account for all recycling, and introduce a new measure 

called the comprehensive cycling index (CCI).  In their analysis of 23 ecosystem models, 

however, they found CCI to be linearly related to FCI by a factor of 1.14.  As CCI is 

computationally intensive to determine and appears to be a linear multiple of FCI, we focus on 

FCI.        

)z)1n((
n

1i
iii∑

=

−≡

4.2.2.2 DETERMINANTS OF INDIRECT EFFECTS  

To evaluate the relative influence of system attributes in determining the portion of 

indirect flow, we constructed a series of ordinary least squares regression models.  While we 

could not evaluate the role of factors such as n and C because structure was constant in these 

networks, flow variability allowed us to consider the role of direct and cycled flow identified by 

Higashi and Patten’s algebra as important determinants of indirect flows.  We also considered 

boundary flow as a potential factor as it is a component of TST (2).  We first examined the 

independent relationship between Indirect and Boundary, Direct and Cycled.  We further 

considered additional pairwise combinations and multiple regression where appropriate. 
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4.3 RESULTS  

The sixteen seasonal models of nitrogen cycling in the Neuse River Estuary demonstrate 

an expected seasonality in TST (Figure 4.2).  TST varies from a minimum of 5,732 mmol N m−2 

season−1 in fall 1988 to a maximum of 20,182 mmol N m−2 season−1 in summer 1985.  Mean 

TST was 10,373 mmol N m−2 season−1 (± 4,207 SD).  There appears to be a seasonal trend to the 

TST data with highs in summers and lows in winters.  These results match our expectation that 

biogeochemical activity increases in spring as temperature and light levels increase, reaching a 

maximum in summer, and then declining through the fall to a minimum in winter.  One 

exception to this general pattern is the summer of 1986.  It is lower than the previous spring and 

is surprisingly lower than that found in the other four years.  The cause of this deviation is 

unknown.  The Finn Cycling Index (FCI) was high in these models with a mean of 88% (± 9% 

SD).  Though we used a different set of algorithms, our TST and FCI values appear similar to 

those reported by Christian and Thomas (2003), demonstrating analytic consistency.  Further, 

they showed that the values of nitrogen cycling found in the Neuse River Estuary are some of the 

highest reported in the literature. While there appears to be some seasonality to FCI, its 

regression with TST does not explain much of the variation (R2 = 0.31).   

In summary, nitrogen fluxes in the sixteen seasons of the Neuse River Estuary analyzed 

here were large and varied in a seasonal manner consistent with ecological expectations.  More 

surprising was the magnitude of nitrogen recycling in the estuary.  TST and the cycling index 

provide the starting point for our analysis of indirect flows in this system.   

4.3.1 INDIRECT EFFECTS IN THE NEUSE RIVER ESTUARY MODELS 

Nitrogen flux in the Neuse River Estuary was dominated by indirect flows in all sixteen 

seasons (Figure 4.3).  Indirect/Direct consistently exceeded unity, ranging from 9.9 in winter 
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1987 to 174.4 in summer 1987 (Figure 4.3A).  Indirect/Direct is linearly associated with TST (R2 

= 0.72), indicating that it is influenced by variation in TST.  The fractional decomposition of 

TST using equation (4.3) again shows the dominance of indirect flows (Figure 4.3B).  In all 

sixteen seasons indirect flow was more than 80% of TST.  This partition also hints at a strong 

similarity in the amount of nitrogen loading or boundary inputs and the direct flows in the 

system.   

There were small but not significant seasonal and interannual variations in the indirect 

flow index (IFI), where indirect flows were normalized by TST (Figure 4.4).  Seasonal means 

ranged from 0.98 (± 0.01 SD) in summer to 0.91 (± 0.06 SD) in winter (Figure 4.4A).  Year class 

means ranged from 0.97 (± 0.02 SD) in yc1985 and yc1987 to 0.94 (± 0.07 SD) in yc1986 

(Figure 4.4B).  Winter and yc1986 were the most variable groups, as they contained winter 1987 

which had the lowest IFI.  This may be because winter 1987 had the highest loading of nitrogen, 

resulting from extensive rainfall that season, and shortest flushing time within the estuary 

(Christian et al., 1991, Christian and Thomas, 2000).  A two-way ANOVA suggests that seasonal 

variation is significant at α = 0.1 but not α = 0.05, and there is no significant difference between 

year classes (Table 4.1).  We used a multiple pairwise t-test with Bonferroni corrected p-values 

to examine the potential seasonal differences suggested by the ANOVA.  As the seasonal 

variances were not equal, violating the assumptions of the traditional t-test, we used a modified 

test in which standard deviations are not pooled (Dalgaard, 2002).  These results suggest that 

there are no significant differences between the paired seasons (Table 4.2).  Thus, the marginal 

statistical significant difference among seasons that appears in the two-way ANOVA probably 

results from unequal variances.   
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We were surprised at the relatively small amount of temporal variation in indirect flows 

when normalized by TST within the Neuse River Estuary.  We expected more pronounced 

seasonal variation, increasing with biological activity in the spring, climaxing in summer and 

then declining to a minimum in the winter.  This pattern occurs but the difference between 

seasons was small; all were over 90%. 

4.3.2 DETERMINANTS OF INDIRECT FLOW 

The first step of this analysis was to investigate the pairwise relationship between Indirect 

and 1) Boundary, 2) Direct, and 3) Cycled.  An initial scatter plot of Boundary and Direct versus 

Indirect revealed no clear relationship with Indirect (Figure 4.5A).  However, it did reveal a 

strong linear relationship between Boundary and Direct.  When the regression was forced 

through the origin (by definition direct is zero if there is no boundary flow), it was Direct = 

0.96*Boundary (R2 = 0.99, p<0.001; Figure 4.5B).  Thus, boundary and direct flow were nearly 

identical in this model.  This occurs because each model compartment has a high transfer 

efficiency.  Little nitrogen is lost from the system at each node, allowing most of the boundary 

inputs to pass into the model over paths of length one, which is how Direct was defined. There 

was also a strong linear relationship between Indirect and Cycled (Figure 4.6).  The regression 

equation was Indirect = 906 + 0.98*Cycled (R2 = 0.99, p<0.001), where both coefficients were 

statistically significant.  The large intercept suggests that a portion of indirect flow occurs 

without cycling.  This is understandable as interaction chains can create indirect flows without 

cycling.  In these models, cycled flow by itself explains nearly all of the variation in indirect 

flow; a multiple factor investigation was unnecessary.   
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4.4 DISCUSSION 

We make two primary contributions with this work.  First, we used a sequence of 

seasonal network models to investigate the discrete-time dynamics of indirect flows.  In its 

present form, the mathematics of NEA requires input data from a steady-state system.  Due to 

this analytical constraint, NEA characterizes the organizational complexity of ecosystems, but 

not their dynamic complexity that is frequently of ecological interest.  However, the seasonal 

networks we analyzed provide a temporal sequence of snapshots that begins to reveal system 

dynamics, much like constructing a motion picture film from a series of still frames.  Contrary to 

our expectations, our results revealed no significant seasonal or interannual variation in indirect 

flow as a fraction of TST; it was constantly larger than 80%. While there are temporal changes in 

nitrogen loading and total nitrogen flux, the macro organization of the estuary ecosystem with 

respect to nitrogen flux was remarkably constant. 

The consistency of IFI results from the overwhelming dominance of indirect and 

recycling flows in determining TST.  There are several features of the Neuse River Estuary that 

contribute to this.  First, boundary inputs are minor components of TST.  Christian and Thomas 

(2003) calculated that TN loading averaged 2% of TST, ranging from <1% to the unusually high 

value of 8% during the winter of 1987.  Second, the importance of indirect flows and cycling of 

nitrogen is directly related to differences in the time scales of physical and biological processes.  

The flushing time of freshwater is of the order of weeks to months with an average of about 7 

weeks (Christian et al., 1991).  The turnover of dissolved nitrogen due to biological uptake and 

release is of the order of hours to days (Boyer et al., 1994).  Phytoplankton turnover occurs in 

days (Boyer et al., 1993).  Thus, there is considerable opportunity for imported nitrogen to be 

cycled through biological components numerous times from entry to exit from the system 
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(Christian and Thomas, 2003). Third, the biological activity is largely microbial and potentially 

rapid, resulting from planktonic uptake and release of nitrogen and benthic biogeochemical 

processes.  Cycles with quantitatively important, and biologically mediated, indirect flows thus 

control the overall dynamics of nitrogen.  Biological processing is highly variable among seasons 

and is such a dominant part of TST that the resultant indices of FCI and IFI show little variation. 

Second, we evaluated the relative contribution of several system attributes to the 

development of indirect flow.  Higashi and Patten (Higashi and Patten, 1986; Patten et al., 1990; 

Patten, 1991) demonstrated algebraically that indirect flows could be influenced by n, C, cycling, 

and direct flows, but this work did not evaluate the relative contribution of these variables or 

determine if it was a complete set.  We used linear regression models to evaluate the factors most 

significant in determining indirect flows.  This statistical analysis supported and extended our 

findings for an explanation of consistency in IFI and FCI.  We discovered that in the sixteen 

Neuse River Estuary models cycled flow was indeed the most important factor in explaining 

variation in indirect flow.  Boundary and direct flows were only important in that they are 

necessary for cycling to occur.  Though indirect flows are composed of both cyclic and acyclic 

flows such that IFI > CCI > FCI, cyclic flows appear to be dominant in these models.  This 

occurs because the model compartments have a high transfer efficiency with respect to nitrogen 

use; only a small fraction of nitrogen imports are immediately lost to the system boundary.  In 

this study, we were unable to appraise the relative significance of the model structure, including 

n, C, and network topology, as structure was constant.  Unfortunately we cannot generalize from 

these observations – they are particular to our study system.  However, they are the first results 

to begin to address this question.     
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Ultimately, the Neuse River Estuary was very retentive of nitrogen between spring 1985 

and winter 1989.  The system was dominated by internal, biological processes.  If nitrogen 

loading had been significantly reduced during this period, this ecosystem likely would have 

remained eutrophic for an extended period of time.  If we assume that the system organization 

remained similar in 1997, we would expect the legislated reduction of nitrogen loading to have 

little immediate effect, though this action may be important for long-term change.  This 

conclusion is consistent with that of Christian and Thomas (2003). 

It is difficult to compare our results with previous reports of indirect flows determined by 

NEA for two reasons.  First, previous publications usually do not report the same statistics we 

use in this paper.  Higashi and Patten (1989) reported a measure of total indirect-to-direct flows 

for several ecosystem models taken from the literature.  A five node model of energy flux (kcal 

m−2 y−1) in a cold spring and a five node network of nitrogen flux (g N m−2 y−1) in a Puerto Rico 

mountain rainforest had total indirect flow factors of 2.2 and 12.8 respectively (models reported 

in (Patten et al., 1976)).  They also reported a total indirect flow measure for a six compartment 

oyster reef model of energy flux (kcal m−2 day−1) as 3.3 (model from Dame and Patten (1981)).  

Unfortunately, they do not provide a clear description for how these total indirect flows were 

calculated.  However, we suspect the calculation 1) is based on an alternate formulation for the 

indirect-to-direct flow ratio presented in Fath and Patten (1999) – =Direct
Indirect  

∑∑
∑∑ −−

)g(
)gin(

ij

ijijij , where iij are the elements of the identity matrix I, and 2) includes indirect 

flows from both the input and output orientations.  Using Fath and Patten’s alternative 

formulation the indirect-to-direct ratios in the three models are 0.91, 6.18 and 1.53 respectively; 

when calculated as in equation (4.4) we found them to be 1.02, 6.14, and 1.58 respectively.  
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Regardless of how calculated, the Indirect/Direct ratios for the Neuse River Estuary are 

substantially larger.  Fath (2004) reported an indirect-to-direct ratio for 250 large–scale cyber–

ecosystem models of trophic dynamics with 30, 60, 120, 300, or 600 nodes, with varying 

connectivity, cycling, and TST.  His results, again using the alternative formulation, show that 

Indirect/Direct increases in these models with the number of nodes from approximately 8-10 for 

models with 30 nodes to 80-95 in models with 600 nodes.  It also tends to increase with the Finn 

cycling index (FCI), though this had a restricted range (0.14 – 0.26) in these models.  Given 

these results, the magnitudes of the Indirect/Direct ratio in the Neuse River Estuary models are 

quite surprising.  Some of these very small models display much larger indirect flows than even 

the largest cyber–ecosystem models.  We suspect that this difference is a reflection of the 

differences in compartment efficiencies and cycling, which result from distinctions between 

models of trophic processes and biogeochemistry.   Christian et al. (1996) discussed the 

ramifications of the differences between trophic and biogeochemical networks.  Biogeochemical 

networks, such as analyzed here, may be minimally dissipative, highly aggregated in biological 

nodes and disaggregated in chemical nodes, focused on microbial processes, and inclusive of 

inorganic components instead of treating them as external to the system (e.g., CO2 in foodweb 

networks).  These attributes generally foster cycling and resultant indirect flow. 

The second difficulty however is perhaps more important.  Our results show that the 

Indirect/Direct ratio increases linearly with TST.  Thus, when we compare Indirect/Direct ratios 

between systems, we cannot be sure if we are identifying differences in indirect flows or 

variation in TST.  However, if we normalize the magnitude of indirect flow by TST as in the 

indirect flow index (IFI) we should remove the effects of TST variation.  This creates an 

indicator of indirect flows that is more comparable across systems, similar in form to FCI or 
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CCI.  This should facilitate comparative ecosystem analysis of indirect flows in the spirit of 

Baird et al. (1991) and Krivtsov (2004).   

Strong indirect influences in the Neuse River Estuary with respect to nitrogen, made 

possible by strong cycling, appear to make this system initially more resistant to external 

manipulations to manage the desired change of state (less eutrophic).  In this sense, indirect 

flows seem to be a stabilizing force, making the system more resistant to external perturbations, 

an idea consistent with previous theoretical and empirical ecological investigations of nutrient 

cycling (DeAngelis et al., 1989 and references therein). However, this may be a short-term or 

transient dynamic.  Systems tightly integrated or strongly connected by network indirect flows 

may ultimately be more vulnerable due to their interconnectedness (Barabási, 2002; Gunderson 

and Holling, 2002).  The system transformation may take a long time to be fully expressed, but 

we suspect that systems like the Neuse River Estuary that are highly integrated will be more 

sensitive to both external and internal perturbations including internal changes such as alterations 

in a lower hierarchical level like an individual node becoming more or less dissipative (efficient) 

or disappearing completely.  This is because system integration through indirect flows creates 

what is known as the multiplier effect in economics (Samuelson, 1948).  The multiplier effect is 

indicated by the number of times an input is expected to be used or travel through the system 

before it exits.  Ecologists have termed this average path length (Finn, 1976) or more recently 

network aggradation (Jørgensen et al., 2000).  We expect perturbations to be multiplied more in 

more integrated systems, making them more sensitive or less stable.  This increasing sensitivity 

with increasing connectedness has been described as a loss of ecological resilience in the general 

model of system transformations or adaptive cycle at the heart of Panarchy Theory (Holling, 

1973, 2001; Gunderson and Holling, 2002).  This potential loss of stability is one argument for a 
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modular or hierarchical arrangement of system components, allowing the potential benefits of 

increasing system integration while localizing instabilities (Simon, 1962; Krause et al., 2003).   

This potential increased sensitivity to perturbations suggests that targeted attacks on the most 

well connected nodes (as in Albert et al., 2000; Dunne et al., 2002) or nodes with the largest 

throughflow might rapidly generate system wide changes.  If true this suggests that management 

actions to increase the nitrogen dissipation from Sediment (most well connected) or PN-Hetero 

(most throughflow) might initiate a more rapid system transformation.  Control analysis 

(Schramski et al., 2005) of this system, however, suggests that NOx may be a better management 

target.  Further investigation is required to understand these conflicting possibilities.      

In conclusion, nitrogen flux in the Neuse River Estuary between spring 1985 and winter 

1989 was dominated by indirect flows.  The indirect flow index – total indirect nitrogen flow 

normalized by total system throughflow – showed little seasonal and no significant interannual 

variation.  Nitrogen cycling was the overriding factor determining the magnitude of indirect 

flows.  The Neuse River Estuary was highly nitrogen retentive, ensuring that the same atom of 

nitrogen revisited individual compartments multiple times before exiting the system.  Our 

analysis suggests that because this system is dominated by internal processes management efforts 

focused on decreasing nitrogen loading would not have rapidly impacted the eutrophic state of 

the estuary.  In this sense indirect flows seem to be a stabilizing force, making it more resistant to 

external perturbations.  This may be a transient effect, however, as indirect flows may make the 

system more sensitive in the long-term, as perturbations are propagated and potentially 

magnified.  This prediction may currently be in operation as the ecosystem commonly 

experiences periods of anoxia and hypoxia with subsequent fish kills linked to the substantial 

microbial processing of energy (Baird et al., 2004).    
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4.7 TABLES 

Table 4.1: Results of two-way ANOVA indicating temporal variation (seasonal and interannual) 

of indirect flow index (IFI)  

source of variation df SSE MSE F value
Season 3 0.012119 0.00404 3.67 0.05637 •
Year Class 3 0.002369 0.00079 0.7174 0.56616
Residuals 9 0.009906 0.001101

Pr(>F)

 

· indicates significance at α = 0.1 level.   

 

Table 4.2: Results of a  pairwise comparison (t-test with non-pooled SD) of seasonal mean 

indirect flow index (IFI) indicating no significant differences.  Values in the table are Bonferroni 

corrected p-values. 

Fall Spring Summer
Spring 1 - -
Summer 0.89 0.52 -
Winter 0.81 1 0.55  
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4.8 FIGURE LEGENDS 

Figure 4.1: Nitrogen cycling model of the Neuse River Estuary (modified from Christian and 

Thomas (2000)).  

Figure 4.2: Seasonal total system throughflow (TST, mmol N m−2 season−1, left axis) and 

proportion of total system throughflow due to cycling (Finn Cycling Index, FCI, right 

axis) in the Neuse Estuary from spring 1985 to winter 1989. The mean cycling index was 

0.88 (±0.09 SD) and the mean total system throughflow was 10,373 mmol N m−2 

season−1 (± 4,207 SD). 

Figure 4.3: Indirect effects in 16 seasonal models of nitrogen cycling of the Neuse River Estuary 

(Spring 1985 to Winter 1989).  A) Ratio of indirect–to–direct flow partitions of TST.  In 

all seasons, the Indirect/Direct ratio is substantially greater than one (marked by thin 

horizontal line), indicating the dominance of indirect effects.  B) Seasonal partition of 

TST into boundary, direct, and indirect flow components.     

Figure 4.4: Temporal variation in indirect flow index (IFI = Indirect/TST). A) Seasonal. B) 

Interannual, based on year classes grouping 4 sequential seasons to form a year class (i.e., 

yc1985 = {spring 1985, summer 1985, fall 1985, and winter 1986}).  There are no 

statistically significant differences between seasons or years classes.    

Figure 4.5: Relationship between flow types in 16 seasonal nitrogen cycling models of the Neuse 

River Estuary (1985-1989).  A) Indirect flow shows no clear relationship with either 

boundary or direct flow; however, B) there is a strong linear relationship between 

boundary and direct flows (Direct = 0.96*Boundary, R2 = 0.99, p<0.001).   
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Figure 4.6: Relationship between indirect and cycled flows in the 16 seasonal nitrogen cycling 

models of the Neuse River Estuary (Indirect = 906 + 0.98*Cycled, R2 = 0.99, p<0.001).  
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 

Sp S F W Sp S F W Sp S F W Sp S F W

To
ta

l S
ys

te
m

 T
hr

ou
gh

flo
w

P
ar

tit
io

n

0.00

0.25

0.50

0.75

1.00
Boundary
Direct
Indirect

In
di

re
ct

/D
ire

ct

0

25

50

75

100

125

150

175A

1985 1986 1987 1988 1989

B

 

 

119



 

Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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CHAPTER 5 

ENVIRON INDICATOR SENSITIVITY TO FLUX UNCERTAINTY IN A PHOSPHORUS 

MODEL OF LAKE SIDNEY LANIER, USA1 

1 HEADING  

2 HEADING 

3 HEADING 

4 HEADING 

5 HEADING 

 

                                                 

1 Borrett, S.R., O.O. Osidele, M.B. Beck. To be submitted to Ecological Modelling 
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ABSTRACT 

Effective environmental impact assessment and management requires improved 

understanding of the organization and transformation of environmental systems, especially 

ecosystems.  Ecosystems are complex adaptive systems in which many independent agents are 

linked through an intricate network of energy, matter, and informational interactions.  While 

advances have been made in the last three decades, we still lack a complete theoretical 

understanding of the processes that create and maintain ecosystems.  Network Environ Analysis 

(NEA) is one type of ecosystem network analysis distinguished by its explicit environment 

focus.  It provides one approach for building novel ecosystem insights.  NEA, however, is 

applied to mathematical models of natural systems, and is thus model dependent.  As ecological 

modeling is an imprecise art, often complicated by incomplete empirical data for model 

calibration and evaluation, the utility of NEA may be limited by model uncertainty.  In this work, 

we investigated the sensitivity of nine whole-system indicators of ecosystem growth and 

development to flow and storage uncertainty in a phosphorus model of Lake Sidney Lanier, 

USA.  The indicators included total system throughflow (TST), total system storage (TSS), total 

boundary input (Boundary), Finn cycling index (FCI), ratio of indirect-to-direct flows 

(Indirect/Direct), indirect flow index (IFI), network aggradation (AGG), network 

homogenization (HMG), and network amplification (AMP).  The results of our study make two 

primary contributions to ecosystem network analysis.  First, they demonstrate that five of the 

ecosystem network analysis indicators – FCI, Indirect/Direct, IFI, AGG and HMG – were 

relatively robust to the flow and storage uncertainty in the Lake Lanier phosphorus model.  This 

allows us to circumvent at least part of the modeling problem to draw stronger conclusions about 

the organization of the Lake Lanier ecosystem.  Phosphorus flux in the lake is heavily influenced 
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if not dominated by internal processes.  Second, the results show that the majority of the nine 

ecosystem indicators investigated co-varied and that their common variation could largely be 

mapped into two latent factors.  We have tentatively interpreted these two factors as 1) system 

integration and 2) boundary influences.   
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"The desire for simplification is justified, but the same does not always apply to 

simplification itself, which is a working hypothesis, useful as long as it is recognized as such and 

not mistaken for reality. The greater part of historical and natural phenomena are [sic] not 

simple, or not simple in the way that we would like." (Levi, 1988)    

 

5.1 INTRODUCTION 

Ecosystems are open non-equilibrium thermodynamic systems knit together by an 

intricate network of energy, matter, and information exchanges among biological organisms and 

their environments (Ulanowicz, 1986; Higashi and Burns, 1991; Capra, 1996; Patten, 1998; 

Jørgensen, 2002).  Like other kinds of complex adaptive hierarchical systems, they appear to 

self-organize in response to thermodynamic gradients (Schneider and Kay, 1994; Müller, 1996; 

Levin, 1998; Patten et al., 2002).  A clear formal understanding of ecosystem organization and 

transformation has yet to emerge, however, despite several empirical and theoretical attempts 

(e.g., Odum, 1969; Ulanowicz, 1986; Gunderson and Holling, 2002; Jørgensen, 2002; Fath et al., 

2004).  This understanding is critical as ecosystems provide the natural capital and services that 

support human endeavors (Costanza et al., 1997; Daily, 1997); it is essential for effective 

ecosystem assessment and management (Christensen, 1996; Reichman and Pulliam, 1996).    

Ecosystem science has a long history of characterizing patterns of organization and 

development (e.g., Lindeman, 1942; Odum, 1962; Teal, 1962; Margalef, 1963; Odum, 1969).  

Numerous measures of ecosystem organization have been proposed including gross production-

to-respiration ratio, gross production-to-biomass ratio, species diversity, flow diversity, cycling 

(Odum, 1969), emergy (Odum, 1983), and ascendency (Ulanowicz, 1986, 1997).  As systems 

develop, several of these measures appear to consistently increase or decrease, suggesting 
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possible orienting forces or constraints on self-organization (Odum, 1969; Ulanowicz, 1986; 

Schneider and Kay, 1994; Müller and Leupelt, 1998; Fath et al., 2001).   

Jørgensen (2002), in his efforts to weave together multiple ecosystem theories into a 

coherent whole, acknowledged that a plurality of approaches remains necessary.  Holoecology 

(Patten, in prep.) offers one distinct approach.  The overarching goals of the Holoecology 

Research Program are 1) to develop a deep understanding of the lawful processes that create, 

constrain, and sustain ecological systems and 2) to create a formal theory of environment.  

Network Environ Analysis (NEA) is the primary methodology of holoecology (Patten, 1978; 

Matis and Patten, 1981; Patten, 1982; Fath and Borrett, 2005; Patten, in prep.).  Fundamentally, 

NEA is an environmental application and extension of economic Input–Output Analysis 

(Leontief, 1966).  Though it has elements in common with other forms of ecosystem network 

analysis such as Input-Output Analysis as implemented in Ecopath (Christensen and Pauly, 

1992; Christensen and Walters, 2004) or Acendency Theory (Ulanowicz, 1986, 1997; Allesina 

and Bondavalli, 2004), NEA is distinguished by its explicit environment focus.  It is used in the 

holistic study of ecological networks to describe and quantify component-level bounded 

environments within systems, termed environs (Patten, 1978, 1981, 1982). 

A particular strength of NEA is that it includes several whole-system indicators that 

summarize system organization including total system storage (TSS), total boundary input or 

output (Boundary), total system throughflow (TST), Finn cycling index (FCI), average path 

length or network aggradation (AGG), ratio of indirect-to-direct flows (Indirect/Direct), indirect 

flow index (IFI), network homogenization (HMG), and network amplification (AMP).  TSS, 

Boundary, TST, FCI, and AGG are commonly used in other forms of ecosystem network 

analysis; Indirect/Direct, IFI, HMG, and AMP are unique to NEA (Patten, 1998; Fath and Patten, 
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1999b).  Collectively, these indicators provide insight into the flow and storage organization of 

ecosystem models.  Based in part on the application of these indicators to ecosystem models, 

Patten (1998; in prep.) argues that ecological systems are integrated by indirect effects.     

The Achilles heel of these indicators, NEA, and ecosystem network analyses in general is 

that they are based on models of real ecosystems.  Ecological modeling remains a challenging 

endeavor with no consensus on the best approach or evaluation procedures (Levins, 1966; 

Oreskes et al., 1994; Oreskes, 1998; Ginzburg and Jensen, 2003).  In truth, an infinite number of 

models fit a given data set, and choosing among models remains challenging.  As the opening 

quote from Levi (1988) states, natural phenomena are not always simple in the way we would 

like.  Previous research revealed that ecosystem indicators can be highly dependent upon the 

model form, especially the degree of model aggregation (lumping vs. splitting) (Cale and Odell, 

1979; Gardner et al., 1982; Cale and O'Neill, 1988; Pahl-Wostl, 1992; Sugihara et al., 1997; 

Yodzis and Winemiller, 1999; Thompson and Townsend, 2000; Abarca-Arenas and Ulanowicz, 

2002).  Less research has explored the sensitivity of these indicators to uncertainty in the 

magnitude of flows and storages (but see Bosserman, 1983; Fath, 2004).  This type of 

uncertainty can arise from incomplete or unknown data for model calibration and evaluation or 

empirical measurement error.  In the work reported here, we investigated the sensitivity and 

interrelations of the indicators of ecosystem organization listed above to flux and storage 

uncertainty in a phosphorus based ecosystem model of Lake Sidney Lanier, USA.  We assumed 

a particular model structure (compartments and connections) and held it constant.  We then used 

Monte Carlo simulations to generate a population of plausible parameterizations given a limited 

set of empirical data which lead to different combinations of phosphorus flows and storages.      
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We investigated two specific hypotheses.  First, we hypothesized that six of our focal 

system indicators (FCI, Indirect/Direct, IFI, AGG, AMP, and HMG) would be robust under 

model flux uncertainty.  Quantitatively we expected each of these indicators to be relatively less 

variable than TST and TSS; qualitatively we expected their interpretations to be consistent.  

Support for this hypothesis will allow us to draw more robust conclusions about Lake Lanier 

despite model uncertainty, effectively circumventing part of the modeling problem.  Second, we 

hypothesized that these six indicators measure slightly different aspects of the same unmeasured 

underlying or latent factor, which we tentatively term system integration by indirect effects.  This 

hypothesis implies that the indicators will be highly correlated.  We also expected they would 

largely map into one principle latent factor.  Support for this hypothesis would potentially allow 

us to reduce the number of NEA indicators required to characterize the degree of system 

integration by indirect effects.   

5.2 MATERIALS AND METHODS 

5.2.1 STUDY SYSTEM 

Lake Sydney Lanier is a large reservoir in the headwaters of the Chattahoochee River in 

Georgia, USA.  It drains a 2704 km2 watershed, and at the conservation pool elevation of 326.4 

m covers 150 km2 with 869 km of shoreline (Guan, 1993; Fath and Beck, 2005).  Constructed in 

the 1950’s by the U.S. Army Corp of Engineers, the reservoir was initially to provide flood 

control, hydroelectric power, and downstream navigation regulation (US Army Corps of 

Engineers, 2005).  The reservoir lies just northeast of downtown Atlanta, one of the fastest 

growing metropolitan areas in the United States for the past two decades (Metro Atlanta 

Chamber of Commerce, 2000).  It has become an increasingly important source of drinking 

water, wastewater dilution, and recreation for the region.  Lake Lanier is a key resource 
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supporting the expansion of Atlanta and the rapid urbanization of its own watershed (Fath and 

Beck, 2005) 

5.2.2 MODEL CONSTRUCTION 

For this work, we started with a modified version of the thirteen compartment Lanier 

ecosystem model introduced by Osidele and Beck (2004).  The original model was converted to 

a consistent currency – phosphorus – and non-linear mechanistic functions were replaced with 

phenomenological donor controlled functions so that the model would readily achieve steady-

state.  These alterations were essential to meet the assumptions of NEA. In our model, the donor 

controlled functions are represented by first-order differential equations of the generic form: 

 X
t
X

X ⋅−= λ
d
d  (5.0) 

where X is a generic compartmental state variable, λX is a rate constant, and t is continuous time. 

Because the function is donor controlled, the negative sign indicates a loss or transfer from the 

donor compartment.  Our modified model has eleven state variables or storage compartments 

(mg P m−2), twenty six within–system flows (mg P m−2 d−1), five boundary inputs, and 4 

boundary losses (Figure 5.1).  The compartments represent 1) epilimnion phosphorus (EPI-P), 2) 

hypolimnion phosphorus (HYPO-P), 3) phytoplankton (PHYTO), 4) microbes (bacteria, etc.; 

MIC-B), 5) microzooplankton (MIC-Z), 6) macrozooplankton (MAC-Z), 7)  macroinvertebrates 

(insect larvae, etc.; MAC-I), 8) larval/juvenile fish (FISH), 9) suspended detritus (SSD), 10) 

sediment detritus (SEDD), and 11) pore space phosphorus (PORE).  Phosphorus enters the 

model from the Chattahoochee River, Chestatee River, and the watershed via fluxes into EPI-P, 

HYP-P, FISH, SSD, and PORE.  Phosphorus is lost from the system from EPI-P, PHYTO, 

MAC-I, and FISH. 
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In this investigation model structure (network topology) was fixed, while flow and 

storage magnitudes were variable.  We used Monte Carlo simulations (Manly, 1991) and 

regionalized sensitivity analysis (Osidele and Beck, 2001) to identify parameter values that 

generated model behavior that matched the observed summer behavior in the Lake. Behavior 

was defined as a range of values for phosphorus, phytoplankton and fish in order to account for 

uncertainty and spatial variability in the available observational data. Thus, model behavior 

matched empirical behavior (i.e., successful) when the model ouputs fell within the prescribed 

range of values. Data for phosphorus and phytoplankton were obtained from studies conducted 

for the Georgia Department of Natural Resources (DNR) under the U.S. Environmental 

Protection Agency’s Clean Lakes Program (Hatcher et al., 1994). Data on fish were obtained 

from fisheries management reports of the DNR Wildlife Resources Division (Weaver, 2000). 

These data records indicate that average annual phosphorus concentration in the photic zone 

ranges from 2 to 4 μg L−1, with no distinct spatial variation across the reservoir. Phytoplankton 

chlorophyll  concentrations range from 7 μg L−1 at the tributary inlets to 2 μg L−1 at the dam site, 

and larval-juvenile fish average 20 to 50 kg.ha-1 lakewide. These observations were converted to 

the model currency and units for prescribing the following summer behavior definition: 

• steady state epilimnion SRP concentration should be between 58 – 70 mg P m−2; 

• steady state phytoplankton biomass should be between 13 – 52 mg P m−2; 

• steady state larval-juvenile fish biomass should be between 100 – 250 mg P m−2. 

Thirty parameters were considered in the regionalized sensitivity analysis. They consisted of the 

30 mass transfer rate constants λX in (5.0), representing 26 within-system flows and 4 boundary 

losses. Each parameter was sampled from a uniform distribution over the interval [0.0., 0.5]. To 

insure our sample of parameter values was representative of the larger population of possibilities, 
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we compared mean and variance of the ecosystem indicators in successful samples from trial 

runs of 500, 1000, and 5000 realizations.  We used a Welsh t-test to compare the means as it 

does not assume identical variance (Dalgaard, 2002). 

5.2.3 NETWORK ENVIRON ANALYSIS – THROUGHFLOW ANALYSIS 

NEA (Patten et al., 1976; Patten, in prep.) is a family of input–output methods descended 

from economics (Leontief, 1965, 1966) that analytically decomposes observed system flows and 

storages to identify their origins or fates within a system of interest (see Fath and Patten, 1999b 

for review).  NEA methods are extensively described in the literature (Patten et al., 1976; Matis 

and Patten, 1981; Fath and Patten, 1999b; Patten, in prep.) and include input and output analyses 

of structure, throughflow, storage, utility, and control within systems.  In this paper, we 

concentrate on the output oriented throughflow analyses.  We briefly review the NEA methods 

used in this paper and formally define the system indicators investigated (Table 5.1).  

Let )f(F ijnn =× , i,j = 1,…, n, and 0fii =  be the empirically observed flows from 

compartment j to i, iz  be the inputs to i, iy  be the outputs from i, and ix  be the storage values of 

an n compartment system.  The total currency (e.g., energy, carbon, nitrogen, phosphorus) 

flowing into or out of a compartment, called throughflow, is defined as k

n

1)k(j
kj

)in(
k zfT +≡ ∑

=≠

 and 

k

n

1)k(i
ik

)out(
k zfT +≡ ∑

=≠

, respectively.  At steady state, energy–matter continues to flow through the 

system, but storage is constant through time, whereupon k
)out(

k
)in(

k TTT ==  n,,1k K= .  Total 

system throughflow ( ∑= kTTST ) is a system-level measure of activity often used to 
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characterize ecosystem models (Finn, 1976; Ulanowicz, 1986)2.  Fath et al. (2001) further 

suggested that, at least in models of energy flux, TST was a network measure of system power in 

the sense of Lotka (1922).  Total system storage ( ∑
=

=
n

1i
ixTSS ) is the total amount of currency 

stored in the system compartments.  Jørgensen and Mejer (1979) suggested that TSS would tend 

to be maximized during ecosystem growth and development.  Total boundary input (∑
=

n

1i
iz ) 

indicates the amount of energy-matter initially available to the system, while total boundary 

output (∑
=

n

1i
iy ) is the amount lost to the environment.  Again, at steady-state these are equal such 

that total boundary flow (Boundary) is ∑∑
==

==
n

1i
i

n

1i
i yzBoundary . 

At least four variations for partitioning throughflow among different pathway types have 

been reported previously, three of which build off the original Leontief analysis (Gattie et al., in 

prep.).  Many of the indicators we investigate here are derived from two of these: Leontief and 

Finn.  

5.2.3.1 LEONTIEF 

The first type of throughflow partition, the Leontief model, is based on Leontief’s 

original economic Input-Output Analysis (Leontief, 1966).  To determine the integral (boundary 

                                                 

2 Total system throughflow as defined here is consistent with most applications of NEA, but different from 

what Ulanowicz (1986) calls total system throughput (TSTP).  TSTP is the summation of all within system flows, 

boundary inputs and boundary outputs, such that ∑∑ ∑ ∑++= iiij yzfTSTP , where as 

∑∑ ∑∑∑ ∑ +=+= iijiij yfzfTST .   
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+ direct + indirect) amount of material and service required to generate a given product, he 

developed a matrix to map outputs into throughflow.  Augustinovics (1970) turned the problem 

around to find a matrix to map inputs into throughflows, which we will denote as N.  The output 

oriented Leontief decomposition can initially be written as T = Nz.  N can be derived by first 

normalizing the observed flows by the donor compartment throughflow ( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

j

ij
ij T

f
)g(G ).  The 

resultant matrix, nnG × , represents the donor-specific direct flow intensities from j to i.  The 

elements of G are interpreted as the probability that material entering j across the boundary will 

flow to i over a direct path (i.e., path length, m = 1).  Flow from j to i over indirect pathways (m 

> 1) is then determined by raising G to the mth power, Gm.  The elements of Gm are typically 

interpreted as the probability of material flowing over all pathways of length m between any two 

compartments.  Total node throughflow is recovered by post multiplying the sum of the infinite 

power series of flow intensities by the boundary inflows: 

 { { z*GGGIT
Indirect

m2

Direct

1

Boundary
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++= 44 344 21 KK ,  (5.1) 

where 0GI =  is the matrix multiplicative identity.  In open, dissipative, thermodynamic systems 

like ecosystems, the power series converges to the Leontief transitive closure matrix 

1
ij )GI()n(N −−== , such that (nij) represents the integral (boundary + direct + indirect) 

throughflow from j to i generated by a boundary input to j.  This power series decomposition 

reveals that, at steady-state the empirically observed flows are a composite of boundary, direct, 

and indirect flows.  Patten (in prep.) terms this network enfolding, which is one of the cardinal 

hypotheses of Holoecology (see Chapter 2).   

134



 

 

 For a system level partition, we can rewrite the throughflow decomposition in (5.1) by 

distributing z across the flow intensity partition, and summing the elements of each n×1 resultant 

vector to derive the following restatement in terms of TST: 

 
{ 44 344 21321

IndirectDirectBoundary

z)GIN(GzIzTST ∑∑∑ −−++= . (5.2) 

Dividing both sides of (5.2) by TST generates:   

 
TST

z)GIN(
TST

Gz
TST

z
1 ∑∑∑ −−

++= . (5.3) 

The boundary flow index (
TST

z∑ ), direct flow index (
TST

Gz∑ ), and the indirect flow index 

(
TST

z)GIN(
IFI ∑ −−

= ) are dimensionless numbers between 0 and 1 that indicate the proportion 

of TST derived from the three categories of flow in the Leontief type decomposition.  IFI was 

first used to compare the seasonality of indirect effects in the Neuse River Estuary (Borrett et al., 

in press, Chapter 4).  Notice that in (5.2) and (5.3), direct effects are defined as only the first 

transfer of the boundary inputs within the system; indirect effects encompass all other transfers. 

Three NEA indicators have been developed from the Leontief partition to characterize the 

flow organization in model systems.  The first is the ratio of indirect-to-direct flow (Higashi and 

Patten, 1989; Fath and Patten, 1999b; Borrett et al., in press).  This is calculated using the 

elements of the Leontief decomposition in (5.2) as follows: 

 
∑

∑ −−
=

Gz
z)GIN(

Direct
Indirect .      (5.4) 

When greater than unity, this ratio indicates that indirect flows dominate direct.  The second 

indicator is network homogenization (HMG), which is said to occur when the integral flow 

transfer coefficients (nij) are more evenly distributed than the direct (gij) (Patten et al., 1990).  It 
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is calculated as the ratio of the coefficient of variation of G, CV(G), and the coefficient of 

variation of N, CV(N) (Fath and Patten, 1999a), such that   

 )N(CV
)G(CVHMG = ,  (5.5) 

where the coefficient of variation is the standard deviation of the matrix elements divided by 

their mean.  Like Indirect/Direct, when HMG is greater than unity the network operates to more 

evenly distribute the system resources.  Thus, each node is receiving a more equal amount of 

flow from the other nodes over the integral (direct + indirect) pathways.  The third measure is 

network amplification (AMP), which indicates “…that the summed total amount of flow through 

a compartment can be greater that the total amount of input into the network” (Fath and Patten, 

1999b, p. 175).  This has been quantified by counting the number of off diagonal elements of the 

N matrix that are greater than unity (# nij > 1, i≠j) (Patten et al., 1990).  To facilitate future cross 

system comparisons, we report this number as the fraction of possible amplified positions, such 

that =AMP  
)1n(n

)ji()1n(# ij

−

≠>
.     

5.2.3.2 FINN CYCLING 

Finn (1976) proposed an alternative partition of TST into portions from acyclic 

throughflow and cycled flow.  Cycled flow is calculated using the Leontief transitive closure 

matrix where )z)1n((Cycled
n

1i
iii∑

=

−≡ , and Acyclic = TST − Cycled.  Based on this flow 

partition, he proposed an index of cycled flow, known today as the Finn cycling index (FCI).  It 

is the ratio of cycled flow to TST (Finn, 1980), and is a common metric used to characterize 

ecosystem organization.  Allesina and Ulanowicz (2004) recently found that FCI slightly 

underestimates the magnitude of cycling; however, they report a linear association between FCI 
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and their estimate of true cycling (1.142 * FCI) in 23 ecosystem models.  Here we report the 

uncorrected FCI because it is not necessarily a bad estimate of cycling, it is more commonly 

reported in the literature, and it is simple to convert if desired.    

Finn (1976) also introduced another network indicator he called average path length, 

calculated as the ratio of TST to total boundary input.  It specifies the average number of times 

an average input passes through the system before exiting.  Han (1997) suggested that this should 

be called the flow multiplying ability of the system.  Patten (Jørgensen et al., 2000) re-introduced 

the same measure, but with a thermodynamic interpretation as an indicator of system growth and 

organization.  He termed it network aggradation, which is the name we adopt.  Thus, network 

aggradation (AGG) is  

 ∑=
iz

TSTAGG . (5.6) 

Observe that this is the inverse of the boundary flow index in (5.3).  If TST is a measure of the 

system power, then AGG is the power generated by an average boundary input. 

5.2.4 DATA ANALYSIS 

We first used a modified version of NEA.m (Fath and Borrett, 2005, see Appendix A) to 

calculate the indicators for each of the plausible parameterizations.  To address our first 

hypothesis that the ecosystem indicators would be robust to flow and storage uncertainty, we 

began by characterizing the indicator distributions.  However, comparing their variability was 

challenging as these indicators are not measured on similar scales.  For example, TST has units 

of mg P m−2, Indirect/Direct is a dimensionless ratio where ∞≤≤ Direct/Indirect0 , and AMP is 

a dimensionless ratio where 1AMP0 ≤≤ .  To dodge this issue, we compared their relative 

variability by rank ordering the indicator coefficients of variability (CV).  Variability of TST, 
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TSS, and Boundary provided a baseline indication of the flow and storage variability in the 

plausible model parameterizations. 

To evaluate our second hypothesis that the ecosystem indicators we are investigating 

measure different aspects of the same underlying factor, we initially used ordinary least squares 

regression to evaluate the correlation strength of the indicators.  We then used a principle 

components factor analysis to identify the existence of any latent or underlying variables (Grimm 

and Yarnold, 1995; Johnson, 1998).  We used the Kaiser criterion to select the number of 

relevant factors.     

Calculations and statistics were accomplished using a combination of MATLAB® 

(version 6.5, The Mathworks, Inc.) and R (version 2.0.1, R Development Core Team, 2004).   

5.3 RESULTS  

Our first task was to demonstrate that our sample of plausible model parameterizations 

was representative of the larger population of possibilities.  We ran three Monte Carlo 

simulations with three different samples: 500, 1000, and 5000.  These produced 14, 18, and 90 

plausible parameterizations that generated steady-state models with behavior that sufficiently 

matched the empirically known summer behavior of epilimnion soluble reactive phosphorus, 

phytoplankton, and fish in the lake (Figure 5.3).  We then compared the mean and variability of 

the nine NEA indicators in the three samples (Figure 5.4).  There were no statistically significant 

differences of the mean and variance between the three samples for TST, TSS, FCI, 

Indirect/Direct, IFI, AGG, and AMP.  Sample variance of the total boundary inputs Boundary 

were significantly different, increasing with sample size.  Network homogenization mean and 

variance was statistically different between the 500 and 5000 trials.  While a larger sample size 

might have stabilized results for total boundary flow and homogenization, we concluded that for 

138



 

 

our purposes, the 90 plausible parameterizations would be sufficiently representative and provide 

a large enough sample size to address our hypotheses.  All subsequent data presented is from the 

90 plausible parameterizations.     

While our work focuses on the whole system indicators derived from NEA, we present 

the average (± SD) flows and storage values for the 90 plausible parameterizations for 

completeness (Figure 5.2).  Phosphorus stored in the epilimnion (EPI-P), phytoplankton 

(PHYTO), and fish (FISH) were the least variable, as expected as these were model behaviors 

matched to the empirical data.  In contrast, the storage in the other compartments was quite 

variable.  For example, phosphorus in the sediment pore space (PORE) had a mean of 341.3 mg 

P m−2 and a standard deviation of 588.7.  Boundary flows were relatively less variable with the 

largest standard deviation being 21.5 associated with the largest mean boundary loss 53 mg P 

m−2 d−1 from FISH.  Internal system flows ranged from a minimum of 4.3 mg P m−2 d−1 (± 2.7) 

from phytoplankton to epilimnion P to a maximum of 55.8 mg P m−2 d−1 (± 47.2) from the 

hypolimnion to the microbial compartment.   

5.3.1 INDICATOR VARIABILITY 

Our results show a range of variability among the nine network statistics evaluated (Table 

5.2).  For the 90 parameterizations that matched the known behavior of Lake Lanier, the mean 

total system throughflow (TST) was 749 (± 303) mg P m−2 d−1, and the mean total system 

storage (TSS) was 1634 (± 985) mg P m−2.  Total phosphorus loading or boundary inputs 

(Boundary) was 96 (± 20) mg P m−2 d−1.  As these models were necessarily at steady-state, this is 

also the mean and standard deviation of the total boundary losses form the lake.  Mean Finn 

cycling (FCI) was 0.39 (± 0.11), indicating that approximately 39% of phosphorus TST was 

derived from recycling in Lake Lanier.  This degree of recycling is not surprising given that we 
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are analyzing an ecosystem model of phosphorus cycling, although it does mean the majority of 

system activity (“power”) is generated by boundary and straight chain flows.  The indirect flow 

index (IFI) and ratio of indirect-to-direct flow (Indirect/Direct) were 0.75 (± 0.07) and 7.45 (± 

2.83), respectively.  These indicators suggest that a large fraction of TST was derived from 

indirect flows and that indirect flows were more than seven times greater than the direct flows.  

This is consistent with general findings from NEA theory and analyses (e.g., Higashi et al., 

1989).  The degrees of network aggradation (AGG), homogenization (HMG) and amplification 

(AMP) were 7.84 (± 2.69), 3.10 (± 0.31) and 0.21 (± 0.12), respectively. Theses indicators 

suggest that 1) an average input passes through an average of 7.84 nodes before exiting the 

system, 2) the off-diagonal integral flow probabilities were 3 times more evenly distributed than 

the direct flow probabilities, and 3) on average 22% of the integral flow probabilities exceeded 

unity.  This degree of amplification indicates that quite a few nodes received more than face 

value of a given input, probably due to recycling.   

Despite the quantitative variability derived from model uncertainty, the qualitative 

interpretations of the indicators are robust.  In all 90 parameterizations we can conclude that 

recycling was a large if not dominant source of phosphorus flux. Indirect/Direct always 

surpassed unity implying that indirect flows were dominant, and network homogenization, 

amplification, and aggradation always occurred. 

To compare the relative variability of the ecosystem indicators we calculated their 

coefficients of variation (CV; Table 5.1).  The CV of TST (0.40) and TSS (0.60) reflect the 

whole system flow and storage variability due to model uncertainty.  We used these values as 

benchmarks to compare the other seven indicators.   IFI and HMG had the lowest CVs at 0.10, 

much lower than that of TST or TSS, while AMP was the most variable at 0.59.  AMP was the 
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only indicator to have a CV larger than TST, close to TSS.  The CV of AGG and Indirect/Direct 

were similar at 0.34 and 0.38 respectively, which is quite close to that of TST.  FCI was a little 

less variable at 0.28, and Boundary was 0.21.  Given these quantitative results, the relative 

variability and hence the robustness of the indicators is variable.  Indirect flow index and 

network homogenization were the most robust indicators in our sample.   

We conclude that there is mixed support for our first hypothesis.  The qualitative 

interpretations of the NEA system indicators are consistent, while their quantitative values are 

more variable.  

5.3.2 INDICATOR INTERRELATIONS 

Analysis of the relationships between the ecosystem indicators revealed several 

interesting patterns.  For this analysis we utilized the natural log transformation of TST 

(ln(TST)), TSS (ln(TSS)), Indirect/Direct (ln(Indirect/Direct)), and AGG (ln(AGG)).  This 

transformation normalized the distributions of TST and TSS, which was not true for the 

untransformed variables.  It also straightened the relationship between ln(Indirect/Direct), 

ln(AGG) and the other indicators (Figure 5.5).  Normal distributions and linear relations are 

important underlying assumptions of the statistics we used. 

  Pairwise scatter plots of the combinations of the nine indicators reveal several close 

associations (Figure 5.5).  In almost all cases there is a statistically significant positive 

association between the variables (Figure 5.5 & Table 5.3).  In contrast there are strong positive 

associations between FCI, ln(Indirect/Direct), IFI, ln(AGG), and AMP.  Their correlation 

coefficients ranged from 0.89 to 0.98.  Both the scatter plots and correlation coefficients suggest 

that several of these indicators may be influenced by the same underlying factor, lending support 

for our second hypothesis.  In some cases, however, a linear model may not be the most 
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appropriate (e.g., between ln(Indirect/Direct) and IFI).  Boundary and homogenization are 

exceptions.  Though Boundary does tend to increase with ln(TST) (r = 0.46) and ln(TSS) (r = 

0.23), it is not significantly correlated with the other variables.  Homogenization shows relatively 

weak correlations with the other variables, several of which are not statistically significant. 

We used a principle component factor analysis to further evaluate these associations 

(Table 5.4).  After evaluating several alternatives (not shown) we decided that two factors were 

appropriate for our data.  This decision was supported by the Kaiser criterion; only two 

eigenvalues of the correlation matrix were larger than unity (λ1 = 5.94 and λ2 = 1.46).  This 

suggests that only the first two factors account for more variability than any single variable.  

Further, the first factor captures 65% of the variance and the cumulative variance accounted for 

by the two factors was 80%; adding a third factor only increased this to 85%.  Factor loadings 

(Table 5.4) indicate the correlation of each NEA indicator with the two factors.  Factor 1 is 

highly associated with the variability in ln(TST) (0.84), FCI (0.95), ln(Indirect/Direct) (0.96), IFI 

(0.97), ln(AGG) (1.00) and AMP (0.91).  HMG, ln(TSS), and Boundary have a role in the Factor 

1, but much smaller than previous variables.  Factor 2 is dominated by Boundary (0.99), with 

some contribution from ln(TST) (0.53) and a smaller piece from ln(TSS) (0.28).  In contrast to 

principal components analysis (PCA), factor analysis only examines the common variation of the 

variables (Tabachnick and Fidell, 1983).  Indicator uniqueness indicates the proportion of 

variation not in common with the other variables.  HMG (0.85) was the most unique variable, 

followed by ln(TSS) (0.55), and then AMP (0.17).  Other variables had a uniqueness factor 

below 0.10.   

Plotting the factor loadings provides an alternative way of viewing the data (Figure 5.6).  

An indicator’s distance from the origin indicates its strength of association with a factor 
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represented by the axis.  As ln(AGG) is the furthest distance from the origin of the y-axis, it is 

the most highly associated with the first factor (x-axis).  This plot emphasizes the close 

relationship between the variability of ln(AGG), IFI, ln(Indirect/Direct), FCI, and AMP, and 

their distance from variation in total boundary flux (Boundary).  Three factors do not fall close to 

an axis – HMG, ln(TSS), and ln(TST) – which could make interpretation of the factors difficult.  

The uniqueness vector, however, indicates that HMG and ln(TSS) variabilities are largely 

unique; ln(TST) is a special case we address further in the discussion. 

These results generally support our second hypotheses, though they suggest it might be 

somewhat simplistic.  Six of the nine NEA indicators – TST, FCI, Indirect/Direct, IFI, AGG, and 

AMP – are highly correlated and are strong elements of the underlying factor associated with 

most of the indicator variance.  The second factor is dominated by boundary flows, while TSS 

and HMG have a high degree of uniqueness in these data.         

5.4 DISCUSSION 

We will discuss the primary results for each hypothesis in turn.   

5.4.1 INDICATOR ROBUSTNESS 

The NEA indicators of ecosystem organization were qualitatively consistent and 

quantitatively differentially robust, lending support to our first hypothesis.  Qualitatively the 

index interpretations did not change.  Indirect flows consistently dominated direct, indirect flows 

and cycled flows were consistently a large proportion of TST, and some degree of network 

aggradation, network homogenization and network amplification occurred.  Quantitatively the 

network indicators were differentially robust, decreasing in variability as AMP > Indirect/Direct 

> AGG > FCI > HMG = IFI.  We cannot determine how these indicators would change if model 
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topology was altered, but given the Lake Lanier model structure and flow and storage 

uncertainty the magnitudes of network homogenization and indirect flow index were relatively 

consistent.  This suggests it may be possible to circumvent part of the modeling problem, at least 

in this case, to draw more robust conclusions about the real ecosystem’s condition. 

The question remains, however, what do these indicators reveal about the Lake Lanier 

ecosystem?  Here we will put the individual indicators into context.  In the next section we will 

discuss their associations and their collective import for understanding ecosystem organization.   

We can draw several important conclusions about the Lake Lanier ecosystem 

organization from this study if we assume the structure of our model is an adequate 

representation.  First, phosphorus flows and storages are heavily influenced by internal 

ecological processes.  This is evident in the consistently high indirect flow index, indirect–to–

direct ratio, and degree of recycling.  This suggests a relatively well developed ecosystem as the 

system is receiving high use of the phosphorus boundary inputs.  Second, we conclude that 

although the phosphorus storages in each compartment are relatively heterogeneous, the 

phosphorus resources available in flows are relatively well mixed based on the fairly robust 

measure of network homogenization.   

5.4.2 INDICATOR INTERRELATIONS 

Our second hypothesis anticipated that the NEA indicators were different measures of the 

same underlying factor, which we hypothesized to be system integration – a form of functional 

connectivity.  The results revealed many strong associations between indicators and that their 

common variance could be largely partitioned into two latent factors.  The common variability of 

at least six of the nine measures (TST, FCI, Indirect/Direct, IFI, AGG, and AMP) could chiefly 

be attributed to one latent factor.  This suggests that they indicate different aspects of a common 
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unmeasured system variable.  We hypothesize that this hidden variable is the degree of network 

integration by indirect effects as suggested by Patten (in prep.).  Total boundary flows 

(Boundary) and a portion of TST could be attributed to a second factor.  Together these latent 

factors accounted for about 80% of the total variance.  Variation of HMG and TSS were fairly 

unique.         

We are not the first to suggest that these indicators overlap.  For example, Higashi 

(Higashi and Patten, 1986; Patten et al., 1990; Patten, 1991) showed algebraically that an 

increase in the number of nodes, connectance, storage, strength of direct flows, or recycling 

tends to increase the indirect-to-direct ratio.  Therefore the positive association of Indirect/Direct 

with TSS, TST and FCI is not surprising.  In a study of forty-one aquatic ecosystem models of 

various sizes and connectance but with a consistent currency (g wet weight m−2 y−1), Christensen 

(1995) compared several proposed indicators of ecosystem maturity.  He found a strong 

correlation between FCI and AGG, but they were not well correlated with TST.  In his principle 

components analysis, FCI and AGG were closely associated with the first component, while TST 

was more closely associated with the second.  This is not inconsistent with our results, although 

our results show a stronger relationship between TST and FCI and AGG.  This difference may be 

driven by the differences in model currency.  Fath et al. (2001) used a five mode pathway 

decomposition to reveal how simultaneous increases in TST, TSS, Boundary and FCI were 

reconcilable.  In their discussion of AMP and HMG, Patten et al. (1990) illustrated how 

recycling pathways are the primary reason these conditions occur.  We would then expect them 

to generally increase with recycling.  When they introduced the quantitative measure, Fath and 

Patten (1999a) confirmed that HMG tended to increase with cycling in a twenty node model.  

Later, Fath (2004) used large (n > 100) cyber-ecosystem models to show that both 
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Indirect/Direct and HMG tended to increase with FCI.   Network amplification, however, never 

occurred in the cyber-ecosystems (Fath, 2004).  This may be because the cyber-ecosystem 

models had a very restricted range of cycling (0.14 < FCI < 0.26).  Borrett et al. (in press) also 

observed a strong association between Indirect/Direct and AGG in sixteen nitrogen network 

models of the Neuse River Estuary, though the reason for this association is not immediately 

transparent.   

We conclude that many of the relationships between the NEA indicators were known or 

anticipated.  Part of our contribution is to bring them together in one quantitative study.  Further, 

in many cases the quantitative form of these relationships was unknown.  We start to fill in this 

detail.  In addition, our data support the hypothesis that many of these indicators are 

characterizing similar aspects of ecosystem organization.   

A closer look at TST, FCI, Indirect/Direct, and IFI and their components may be able to 

explain at least part of their strong associations.  In the context of NEA, indirect flows can be 

partitioned based on two different pathway types: chains and cycles.  In the simple chain i  j  

k, the influence of i on k is mediated by j. There are a finite number of chains possible in a 

network; they can be up to m = n–1 arcs long.  Energy-matter flows in one direction along the 

chain before it exits the system.  In contrast, cycles (pathways that begin and end at the same 

compartment, e.g., i  j  i), establish the possibility of recursive energy and material flow.  

While there are a finite number of simple cycles (cycles without repeated nodes) the total 

number of cycles is theoretically infinite (Chapter 2 & 3).  Flows of a conserved currency over 

these cyclic pathways, however, are ultimately limited in an open thermodynamic system by 

boundary losses.  It is possible for energy-matter in a cycle to pass through the same node 

multiple times before it is exported or dissipated from the system.  Although not all indirect 
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flows (Indirect) are cyclic, all cyclic flows (Cyclic) are necessarily indirect.  Thus, we can 

partition Indirect into components from acyclic (IndirectAC) and cyclic (IndirectC) flows.  

Boundary flows and direct flows are acyclic by definition.  Using this new notation, we can 

rewrite equation (5.2) as follows: 

 CACACAC IndirectIndirectDirectBoundaryTST +++= . (5.7) 

This combines the Leontief and Finn throughflow decompositions.  Equation (5.7) implies that 

IFI ≥ FCI.  When cycled flow is a significant component of indirect flow, we expect these two 

indices to be closely associated.  This should be true in more retentive networks (more efficient 

or less dissipative) such as models of biogeochemical currencies.   

Caution is wise when interpreting resultant factors in factor analysis (Grimm and 

Yarnold, 1995).  However, our correlation and factor analysis suggest there are two latent 

variables influencing most of the NEA indicator variables in this study.  These factors can be 

linked to a conceptual model of ecosystem growth introduced by Jørgensen et. al. (2000), which 

was extended by Fath et. al. (2004) to include four forms.  These are: 

• Form 0 – Boundary growth.  Open thermodynamic systems are sustained by a 

constant source of low-entropy material.  Growth form 0 is the increase in 

boundary input.  Fundamentally, boundary input limits the work that can be 

accomplished by the system. 

• Form I – Structural growth.  Increasing biomass caused by component growth in 

number, size, and types.   

• Form II – Network growth. This growth form captures shifts in the internal 

organization of the system, which may include increasing connectivity and 

recycling of energy and matter.   

147



 

 

• Form III – Informational growth.  This is augmentation of the internal order of the 

informational content of the system.  It includes behavioral changes from a more 

exploitative to a more conservative system as well as possible increases in genetic 

information of component organisms.     

  

Again, Factor 1 is dominated by TST, FCI, Indirect/Direct, IFI, AGG, and AMP.  

Cycling and cyclic pathways appear to be the essential element linking these indicators.  Energy–

matter cycles are fundamental to system growth and development as they establish a route of 

cybernetic feedback (positive or negative) in the system (Patten and Odum, 1981; DeAngelis et 

al., 1986), and provide a means of integrating ecosystem flows and storage (Ulanowicz, 1983; 

Patten et al., 1990).  These six indicators and therefore Factor 1 appear to indicate different 

aspects of Growth Form II, which Jørgensen et. al. (2000) termed “growth-to-throughflow”.  In 

addition, we tentatively suggest that this factor is Patten’s hypothesized integration through 

indirect effects.  Though the variability of HMG was largely unique, we would expect it to also 

be an indicator of Growth Form II.      

Factor 2 captures the variability of boundary flows (Boundary) and a portion of the 

variability of TST.  This factor represents the effects of environmental variability.  TST is a 

component of this factor as well as the first because boundary flows and internal flows are 

combined in its calculation (5.2).  We conclude that this factor relates to Growth Form 0.   

 Variation in TSS was largely unique such that it was only partially associated with Factor 

1 and Factor 2.  TSS is an indicator of Growth Form I.             
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5.4.3 CAVEATS AND CONCLUSIONS 

We must be careful not to over generalize our results; this work is one case study.  Our 

model and methodology allow us to investigate the effect of flow and storage uncertainty on the 

NEA indictors of ecosystem organization in this particular case.  We are unable to assess the 

indicator variability due to model structural uncertainty; our demonstration that several of the 

indicators were relatively robust only allows us to evade a portion of the modeling problem.  Our 

analysis of the relationships between indicators is also limited.  The differential indicator 

robustness means that we did not encounter the full range of each of the indicators.  The 

relationships we characterize here may not hold in all cases.  The difference between our results 

and those of Christensen (1995) suggest that this may be the case.         

Ultimately we would like to utilize these indicators to classify this ecosystem as healthy, 

mature, or to characterize its integrity as the system may be changing due to the rapid 

urbanization of its watershed.  These classifications are relative and require meaningful 

comparisons, which at the moment do not yet exist for our model.  The most pressing problem is 

that our model currency is phosphorus – which is not commonly used.  Perhaps in the future 

enough case studies will exist to draw meaningful conclusions.   

In conclusion, the results of our study make two primary contributions to ecosystem 

network analysis.  First, they demonstrate that five of the ecosystem network analysis indicators 

– FCI, Indirect/Direct, IFI, AGG and HMG – were relatively robust to the flow and storage 

uncertainty in the Lake Lanier phosphorus model.  Thus, if we assume the model structure is an 

adequate representation, we can conclude that phosphorus flux in the Lake Lanier ecosystem is 

heavily influenced by internal processes.  Second, the results show that the majority of the nine 

ecosystem indicators investigated co-varied and that their common variation could largely be 
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mapped into two latent factors.  We have tentatively interpreted these two factors as 1) system 

integration (Growth Form II) and 2) boundary (Growth Form 0).  This case study provides a 

window into the workings of network environ analysis and the Lake Lanier ecosystem.  

Continued research into the sensitivity of ecological network analysis to model uncertainty will 

lead to a better understanding of when our model simplifications are justified, when our 

simplifications need to be altered to better match natural phenomena, and when they are not 

justified.       
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5.7 TABLES 

Table 5.1: Network Environ Analysis indicators of whole system organization  

Indicator Label Description Formula 

Total System Throughflow TST Sum of total flow into or 
out of nodes ∑ ∑∑ ∑∑
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Aggradation  

(a.k.a. average path length, 
flow multiplying ability, 

multiplier effect) 

AGG 
Average number of times 
an average input passes 

through the system 
BoundaryTSTAGG =  

 

157



 

 

 

Table 5.2: Mean, standard deviation (SD), and coefficient of variation (CV) of Network Environ 

Analysis ecosystem indicators to flow and storage uncertainty in a phosphorus model of Lake 

Lanier.  They are ordered by decreasing relative variability shown by the coefficient of variation. 

Indicator Mean SD CV
TSS 1634 985 0.60
AMP 0.21 0.12 0.59
TST 749 303 0.40
Indirect/Direct 7.45 2.83 0.38
AGG 7.84 2.69 0.34
FCI 0.39 0.11 0.28
Boundary 96 20 0.21
HMG 3.10 0.31 0.10
IFI 0.75 0.07 0.10  
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Table 5.3: Pairwise linear ordinary least squares regression coefficients (Y=b + mX) 

Y X
1 ln(TST) ln(TSS) 2.94 * 0.50 * 0.00 *
2 ln(TST) Boundary 5.78 * 0.01 * 0.00 *
3 ln(TST) FCI 5.53 * 2.63 * 0.00 *
4 ln(TST) ln(Indirect/Direct) 5.01 * 0.80 * 0.00 *
5 ln(TST) IFI 3.62 * 3.94 * 0.00 *
6 ln(TST) ln(AGG) 4.75 * 0.90 * 0.00 *
7 ln(TST) HMG 5.88 * 0.23 0.07
8 ln(TST) AMP 6.09 * 2.22 * 0.00 *
9 ln(TSS) Boundary 6.75 * 0.01 * 0.03 *

10 ln(TSS) FCI 6.41 * 2.20 * 0.00 *
11 ln(TSS) ln(Indirect/Direct) 5.87 * 0.72 * 0.00 *
12 ln(TSS) IFI 4.44 * 3.78 * 0.00 *
13 ln(TSS) ln(AGG) 5.48 * 0.89 * 0.00 *
14 ln(TSS) HMG 5.64 * 0.54 * 0.00 *
15 ln(TSS) AMP 6.92 * 1.66 * 0.00 *
16 Boundary FCI 105.76 * -22.67 0.26
17 Boundary ln(Indirect/Direct) 108.03 * -5.75 0.33
18 Boundary IFI 132.44 * -47.43 0.11
19 Boundary ln(AGG) 116.34 * -9.66 0.14
20 Boundary HMG 140.14 * -14.09 * 0.04 *
21 Boundary AMP 99.95 * -14.55 0.40
22 FCI ln(Indirect/Direct) -0.16 * 0.28 * 0.00 *
23 FCI IFI -0.68 * 1.43 * 0.00 *
24 FCI ln(AGG) -0.24 * 0.31 * 0.00 *
25 FCI HMG 0.17 0.07 * 0.05
26 FCI AMP 0.22 * 0.81 * 0.00 *
27 ln(Indirect/Direct) IFI -1.74 * 4.92 * 0.00 *
28 ln(Indirect/Direct) ln(AGG) -0.21 * 1.07 * 0.00 *
29 ln(Indirect/Direct) HMG 0.64 0.43 * 0.00 *
30 ln(Indirect/Direct) AMP 1.36 * 2.73 * 0.00 *
31 IFI ln(AGG) 0.31 * 0.22 * 0.00 *
32 IFI HMG 0.47 * 0.09 * 0.00 *
33 IFI AMP 0.64 * 0.52 * 0.00 *
34 ln(AGG) HMG 0.91 * 0.36 * 0.00 *
35 ln(AGG) AMP 1.51 * 2.37 * 0.00 *
36 HMG AMP 2.98 * 0.45 0.08

* indicates significant at α = 0.05

b m Pr(>F)
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Table 5.4: Principle components factor analysis 

Variable Factor 1 Factor 2 Uniqueness
ln(TST) 0.84 0.53 0.01
ln(TSS) 0.61 0.28 0.55
Boundary -0.09 0.99 0.01
FCI 0.95 -0.04 0.09
ln(Indirect/Direct) 0.96 -0.02 0.07
IFI 0.98 -0.09 0.04
ln(AGG) 1.00 -0.07 0.01
HMG 0.34 -0.18 0.85
AMP 0.91 -0.01 0.17

Loading Sums of Squares 5.81 1.40
Proportion of Variance 0.65 0.16
Cumulative Variance 0.65 0.80  
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5.8 FIGURE LEGENDS 

Figure 5.1: Eleven compartment model of phosphorus flux in Lake Sidney Lanier, Georgia, 

USA. 

Figure 5.2: Average (± SD) inter-compartment flows (F) oriented from column to row, inputs 

(z), outputs (y) in mg P m−2 d−1, and storage (x, mg P m−2) for 90 plausible models of 

phosphorus flow and storage in Lake Lanier.  Compartment labels are in the vector 

Names.     

Figure 5.3:  Example of eleven successful model outputs for A) epilimnion phosphorus, B) 

phytoplankton, and C) larval-juvenile fish.  Constraints for the behavior definitions are 

represented by the dashed lines and square markers. 

Figure 5.4:  Sample distributions of nine Network Environ Analysis indicators in plausible 

parameterizations of the Lake Lanier phosphorus model from simulations with 500, 1000, 

and 5000 trials.  The trials generated 14, 18, and 90 plausible model parameterizations 

respectfully.  The indicators are A) Total System Throughflow (TST), B) Total System 

Storage (TSS), C) Total Boundary Input (Boundary), D) Finn cycling index (FCI), E) 

ratio of indirect-to-direct flows (Indirect/Direct), F) indirect flow index (FCI), G) 

network aggradation (AGG), H) network homogenization (HMG), and I ) network 

amplification (AMP). 

Figure 5.5:  Pairwise scatter plots of nine Network Environ Analysis indicators of ecosystem 

organization in 90 plausible parameterization of the Lake Lanier phosphorus model.  

Scatter plots and ordinary least squares regression lines are plotted above the principle 

diagonal and corresponding Pearson correlation coefficients are positioned below.  
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Notice that TST, TSS, Indirect/Direct, and AGG have been transformed by the natural 

logarithm. 

Figure 5.5: Factor analysis loadings plot.   
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Figure 5.1 
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Figure 5.2 

 

F =  

0 33.6 (10.1) 4.3 (2.7) 0 0 0 0 0 0 0 0
0 0 0 28.3 (29.6) 0 0 0 0 0 0 39.9 (25.8)

25.3 (5.3) 0 0 0 0 0 0 0 0 0 0
0 55.8 (47.2) 0 0 0 0 0 0 33.9 (28.4) 0 0
0 0 5.2 (3.1) 29.6 (25.2) 0 0 0 0 38.2 (32.4) 0 0
0 0 5.1 (3.3) 0 16.8 (15.1) 0 0 0 35.7 (24.0) 0 0
0 0 0 0 18.8 (16.7) 0 0 0 38.3 (25.4) 0 0
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Figure 5.3 
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Figure 5.4 
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Figure 5.5:  

ln(TST)

6.5 7.5 8.5 0.2 0.4 0.6 0.60 0.80 2.6 3.2 3.8

6.
0

7.
0

6.
5

7.
5

8.
5

0.67 ln(TSS)

0.46 0.23 Boundary

60
10

0

0.
2

0.
4

0.
6

0.77 0.48 0.12 FCI

0.80 0.53 0.10 0.97 ln(Indirect/Direct)

1.
5

2.
5

0.
60

0.
80

0.78 0.55 0.17 0.96 0.97 IFI

0.80 0.59 0.15 0.95 0.96 0.98 ln(AGG)

1.
5

2.
5

2.
6

3.
2

3.
8

0.19 0.33 0.21 0.21 0.36 0.39 0.34 HMG

6.0 7.0

0.76 0.42

60 100

0.09 0.93

1.5 2.5

0.93 0.89

1.5 2.5

0.91 0.18

0.1 0.4

0.
1

0.
4

AMP

 

 
 
 

167



 

 

 

Figure 5.6 
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CHAPTER 6 

DECOUPLING ECOSYSTEM AGGRADATION AND INDIRECT FLOW: COMPARATIVE 

NETWORK ENVIRON ANALYSIS OF TWENTY ENERGY MODELS1

1      HEADING 1 

2      HEADING 1 

 

3      HEADING 1 

 

4      HEADING 1 

 

5      HEADING 1 

 

6      HEADING 1 

 

                                                 

1 Borrett, S.R. and B.C. Patten, to be submitted to Biosystems 
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ABSTRACT 

Ecosystems are open thermodynamic systems composed of an intricate network of 

energy, matter, and information flows connecting species and their environments.  They receive 

flows of energy and matter at their boundaries, perform work, and produce heat and degraded by 

products which are dissipated to the environment.  In this study we evaluate the relationship 

between two measures of ecosystem organization: the ratio of total system throughflow and total 

boundary inputs (termed aggradation, AGG) and the ratio of indirect-to-direct flows 

(Indirect/Direct).  A strong association between Indirect/Direct and AGG is compelling because 

AGG has a strong thermodynamic interpretation, while Indirect/Direct is wholly derived from 

ecosystem network analysis.  Linking these two measures offers the possibility of bringing 

together these two approaches.  However, our comparative Network Environ Analysis (NEA) of 

20 energy flux ecosystem models drawn from the literature partially decouples these measures.  

We show they necessarily start at different values, but that they appear to converge as 

compartment transfer efficiency increases.  In addition, we evaluate alternate methods of 

calculating Indirect/Direct and argue that it is more appropriate to make this calculation using 

input vectors that reflect the observed distribution of inputs because indirect flows are generated 

by the internal system organization and the boundary flows that activate them.  Finally, our work 

identifies six ecosystem models in which Indirect/Direct is less than unity, but more generally 

provides additional evidence supporting the hypothesis that indirect flows tend to dominate 

direct flows in model ecosystems. 
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6.1      INTRODUCTION 

Living systems appear to violate the second law of thermodynamics (Schrödinger, 1946).  

The second law states that all natural processes are irreversible and entropy generating or 

degrading, driving the natural world toward thermodynamic equilibrium (Zemansky and 

Dittman, 1997).  Instead, living systems construct order and organization: aggrading rather than 

degrading.  The crux of the problem is to recognize that living systems are open, far-from-

equilibrium systems (Schrödinger, 1946; Prigogine and Stengers, 1984).  They acquire relatively 

low-entropy (high-exergy) energy–matter from their surroundings and use it to perform work, 

degrading the energy and rearranging the matter.  Local organization is gained by exporting 

relatively high-entropy (low-exergy) residues. 

Ecosystems are open, dissipative, far-from-equilibrium thermodynamic systems 

composed of biotic and abiotic elements transferring and transforming energy, matter, and 

information.  They receive high-exergy flows of energy and matter at their boundaries, perform 

organizational work of aggradation (departure from equilibrium), and produce heat and degraded 

byproducts which are dissipated to the environment.  Jørgensen et al. (2000) define ecosystem 

aggradation as a growth process.  Like other kinds of complex adaptive hierarchical systems, 

ecosystems appear to self-organize in response to thermodynamic gradients (Schneider and Kay, 

1994; Capra, 1996; Müller, 1996; Levin, 1998; Müller, 1998; Patten, 1998b; Patten et al., 2002). 

A plurality of theoretical tactics has led to the development of multiple measures of 

ecosystem organization (e.g., gross-production-to-respiration ratio (Odum, 1969), cycling (Finn, 

1976; Ulanowicz, 1983), emergy (Odum, 1983), indirect-to-direct flow ratio (Patten, 1983; 

Higashi and Patten, 1986, 1989), and acendency (Ulanowicz, 1986, 1997)).  Given that the 

fundamental subject matter is the same, however, it would be highly surprising if information 
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embedded in some of the measures did not partially overlap.  As the methodologies mature and 

are compared, relationships between indices are emerging.  For example, Christensen (1995) 

analyzed forty-one ecosystem models of biomass flow and storage created with Ecopath software 

(Christensen and Pauly, 1992) to determine the maturity of their organization.  Using a statistical 

approach, he found strong associations between many of the indicators, and was able to select a 

reduced set of orthogonal indices to rank order the ecosystem maturities, largely based on the 

ideas of Odum (1969).  Building on the work of Patten (1995), Fath et al. (2001) demonstrated 

that several measures of ecosystem growth and development (proposed as system orientors or 

goal functions) were complementary by translating them into a common network analysis 

framework.   

In Chapters 4 and 5 we used a statistical approach to uncover hidden relationships 

between ecosystem indicators derived from Network Environ Analysis (NEA).  One relationship 

was the strong association between network aggradation, which is the ratio of total system 

throughflow to total boundary inputs, AGG = TST/Boundary, and environ indirect effects, which 

are characterized by the ratio of indirect-to-direct flows (Indirect/Direct).  AGG was initially 

introduced by Finn (1976) as average path length, but was rediscovered and proposed as a 

thermodynamically grounded measure of system growth by Patten (Jørgensen et al., 2000).  

Indirect/Direct is a measure of system organization developed in NEA (Patten, 1982b, 1984a, b, 

1985b; Higashi and Patten, 1986, 1989; Patten, in prep.).  In Chapter 4 we found a strong linear 

association (AGG = 0.99 *Indirect/Direct + 0.75, R2=0.99, p<0.001) between AGG and 

Indirect/Direct in the sixteen seasonal models of nitrogen flux in the Neuse River Estuary.  The 

relation in this case suggested the two indices started at different points, but increased at the 

same rate.  Their relationship weakened slightly in the ninety plausible parameterization of the 
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Lake Lanier phosphorus ecosystem model in Chapter 5 (AGG = 0.90 * Indirect/Direct + 0.75, R2 

= 0.92, p<0.001).  This difference may be due to the lower cycling in the Lanier models, but 

could also be influenced by differences in the model currency (nitrogen and phosphorus, 

respectively) or underlying model structure (number of nodes, number of links, pattern of link 

connection).   

In the work presented here we use comparative Network Environ Analysis of 20 energy 

based ecosystem models to further characterize this relationship.  We evaluate two primary 

hypotheses.  The first is the strong association between system aggradation (AGG) and environ 

indirect effects (Indirect/Direct).  Here, we provide a more robust test of the relationship by 

investigating energy models with different structure.  We expect energy models to have lower 

transfer efficiencies and therefore have less cycling than the nutrient based models.  We 

anticipate this will decrease the magnitude of both AGG and Indirect/Direct although not 

necessarily in the same way.  The number of model compartments or nodes (n) is also suspected 

to influence AGG (Finn, 1976), and Higashi (Patten et al., 1990; Patten, 1991) showed 

algebraically that Indirect/Direct tends to increase as system size (n), connectivity (C) or 

proportion of possible direct connections completed, system feedback, strength of direct 

interactions, storage, and cycling increase.    

Second, this study provides a statistical test of the hypothesis that indirect flows tend to 

dominate direct flows in ecosystems, one of the cardinal hypotheses of Holoecology (Patten, in 

prep., see also Chapter 2).  Previous results from NEA suggest that Indirect/Direct is typically 

greater than unity in model ecosystems, implying that indirect flows are dominant (Patten, 1983, 

1984a; Higashi and Patten, 1986, 1989; Patten, 1991, in prep.).  Indirect flows are only one type 

of indirect effects (Miller and Kerfoot, 1987; Wootton, 1994, 2002), though they may 
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phenomenologically reflect several (but not all) types (see Chapter 4).  Indirect effects act as an 

integrating factor binding a system together as a functional and perhaps co-evolutionary unit.  As 

systems become more complex, organized and grow further from thermodynamic equilibrium we 

expect Indirect/Direct to increase.  Conversely, we anticipate reduced transfer efficiencies in 

energy models to constrain indirect flow magnitude and therefore Indirect/Direct, but we are 

unsure if this ratio will drop below unity at which point indirect flows do not dominate direct.   

In the process of considering these issues we used structural NEA developed in Chapter 3 

to determine the presence of strongly connected components in the model structures and 

characterized their rates of pathway proliferation.  Presence of strongly connected components 

and large rates of pathway proliferation are hypothesized to increase the likelihood that indirect 

flows dominate direct flows.  We also evaluated two methods of calculating Indirect/Direct. 

6.2      MATERIALS AND METHODS   

For this work we adopted an empirical approach.  We used comparative Network Environ 

Analysis (NEA, Fath and Patten, 1999; Patten, in prep.) to characterize the organization of 20 

ecosystem models of energy or carbon flux collected from the literature (Table 6.1).  Using a 

modified version of NEA.m (Fath and Borrett, 2005, see Appendix A), we conducted an output 

oriented structural and throughflow analysis.  In this section we will first introduce the models 

selected for this study and then describe the elements of network environ analysis used.   

6.2.1      ECOSYSTEM MODELS 

While all 20 steady-state models selected for this study trace the flux of energy or carbon 

through an ecosystem, they span a range of aquatic ecosystem types and vary in their structural 

and functional representations of the systems (Tables 6.1 & 6.2).  The ecosystem types include 
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an oyster reef community (Dame and Patten, 1981), tidal marsh (Ulanowicz, 1986), estuaries 

(Baird and Milne, 1981; Rybarczyk, 2003), seagrass beds (Baird et al., 1998), open bays (Baird 

and Ulanowicz, 1989; Monaco and Ulanowicz, 1997; Ulanowicz et al., 1998), freshwater and 

tidal marshes (Ulanowicz et al., 1997; Ulanowicz et al., 2000), and mangroves (Ulanowicz et al., 

1999).  The models also range in size (n) and connectivity (C, Table 6.2).  The oyster reef 

community model (Dame and Patten, 1981) is the smallest model with six compartments but it 

has the highest connectivity at 33%.  As this model has been well studied, it provides a 

benchmark for comparisons (Dame and Patten, 1981; Patten, 1985a; Higashi and Burns, 1991).  

In contrast, the wet and dry season models of Florida Bay are the largest models with 125 

compartments (Ulanowicz et al., 1998).  Their connectivity is near the lowest with 13% and 

12%, respectively.  The lowest connectivity (5%) occurs in the fifty-one compartment model for 

the seagrass beds near Sprague Island off the coast of the St. Marks National Wildlife Refuge in 

Florida.  Notice that the models do not have the same flow units; the units include kcal m−2 d−1, 

mg C m−2 summer−1, mg C m−2 y−1, and mg C m−2 d−1.  Nor were the models constructed for 

similar spatial extents.  As we are primarily interested in the relationship between non-

dimensional indicators of ecosystem organization these differences will be less important.  

However, the specific ecosystem observations are likely to be significantly influenced by the 

disparity in temporal and spatial scale, as well as the modeling decisions of the original authors.  

This prevents us from drawing robust comparisons of the actual ecosystems.  Further, Baird et al. 

(1991) argued that it is inappropriate to compare network analysis results from models with 

different structures (but see Christensen, 1995).        

A further complication of this data set is that the models are not strictly independent.  

Several of the models ostensibly represent the same system at different times, in different places, 
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or under alternate conditions.  For example, the Crystal River Marsh ecosystem is modeled 

twice. One represents a section of the marsh impacted by thermal pollution; the other represents 

an unimpacted section (Ulanowicz, 1986).  There are six seagrass ecosystem models for different 

points in space and time off the coast of the St. Marks National Wildlife Refuge (Baird et al., 

1998).  The seagrass system near Live Oak Island and the one near Wakulla Beach are modeled 

in both January and February.  Two additional seagrass sites, Sprague Point and Lighthouse 

Point, were modeled in January and February, respectively.  The Florida Bay (Ulanowicz et al., 

1998), gramminoid marsh (Ulanowicz et al., 2000), and mangrove models (Ulanowicz et al., 

1999) developed as part of the Across Trophic Levels System Simulation (ATLSS; 

http://atlss.org/) project were modeled in both a wet and dry season.  The structure, flow, and 

storage relationships of the models varied despite the physical relationship among several of 

them.  Therefore, we will treat the 20 models as independent for our analysis, although we 

acknowledge that strictly speaking we have only eleven independent samples.       

6.2.2      NETWORK ENVIRON ANALYSIS 

Network Environ Analysis (NEA, Patten, 1978; Matis and Patten, 1981; Patten, 1982a; 

Fath and Patten, 1999; Patten, in prep.) is an environmental application and extension of 

economic Input-Output Analysis (Leontief, 1966) used to investigate ecological systems 

holistically.  It is the primary methodology of the Holoecology Research Program (HRP), which 

is striving to develop a deep understanding of the processes that create, constrain, and sustain 

ecological systems, as well as construct a formal theory of environment.  NEA operates like a 

macroscope to characterize whole-system organization by describing, quantifying, and analyzing 

component-level environments or environs that comprise a system (Patten, 1978, 1981, 1982a, 

1992).  Fath and Patten (1999) recently reviewed the foundations of NEA.  The methodology 

  

176

http://atlss.org/


 

includes analyses of model structure, throughflow, utility, and control.  Our focus in this paper is 

on aggradation (AGG) and the ratio of indirect-to-direct flows (Indirect/Direct) which can be 

derived from the throughflow analysis.  Therefore, here we limit our description of NEA 

methods to the structure and throughflow analyses used.  Additional details of the methodology 

are described in the literature (Patten et al., 1976; Matis and Patten, 1981; Patten, 1985a, in 

prep.).  NEA also includes calculations for both input and output orientations, but we will again 

limit our analysis to the output case.  We expect the input case to be qualitatively similar.    

6.2.2.1      STRUCTURE 

Employing the network perspective (Higashi and Burns, 1991), ecosystem structure has 

three primary elements: the number of compartments or nodes, n; the number of flows or 

directed links L connecting node j to node i, and the pattern of the connections.  The system 

structure can be represented as an unweighted directed graph (digraph) or through its isomorphic 

associated adjacency matrix , where aij = 1 if there is a link from j to i or aij = 0 if 

there is not.  Two measures – link density (L/n) and connectance (C = L/n2) – are often used to 

characterize aspects of the network structure.   

)a(A ijnn =×

For this study, we focus on two large-scale patterns possible in network structure: 

strongly connected components and pathway proliferation.  As described in Chapter 3, networks 

can be decomposed into a unique set of strongly connected components (K).  An induced 

subdigraph includes a subset of nodes and all links that both start and terminate on the node 

subset.  The maximally induced subdigraph is the largest induced subdigraph that remains 

strongly connected, and a strongly connected component is a maximally induced subdigraph in 

which it is possible to reach each node from every other node over a pathway of some length.    

For each model, we report the number of non-trivial (more than one node) strongly connected 
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components (#K) and the proportion of model nodes included in a strongly connected component 

(%K).  We also report the largest rate of pathway proliferation – the rate at which the number of 

pathways increases as pathway length increases – of the strongly connected components.  

Strongly connected components and pathway proliferation have been hypothesized to influence 

the development of indirect effects (Borrett and Patten, 2003, see also Chapters 2 and 3).  

6.2.2.2      THROUGHFLOW 

Throughflow analysis in NEA begins with information about three types of energy–

matter flows: observed internal system transfers )f(F ijnn =× , boundary inputs , and boundary 

losses  (i,j = 1,…,n).  With this information from a steady-state model of conservative energy–

matter transfers, we can determine TST/Boundary and Indirect/Direct.  

iz

jy

The total currency flowing into our out of a node, termed throughflow, is defined as 

 and  respectively.  At steady state, an assumption of 

NEA,  .  Total system throughflow ( ) is a system-

level measure of activity (Finn, 1976).  Finn (1976) partitioned TST into two components: 1) 

TST from straight-chain flow (Chain), and 2) TST from recycled flow (Cycled).  He used this 

partition to construct a cycling index, FCI = Cycled/TST that could be used as another measure 

of system organization (Finn, 1980).   
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Boundary

Boundaryf
Boundary

TSTAGG ijij +=
+

== ∑∑∑∑ . (6.1) 

Normalizing TST by boundary flows creates a measure of system organization.  AGG relates to 

the internal organization generated by energy input from the system environment.  In his early 

work with flow analysis, Finn (1976) proposed AGG as a measure of average path length.  He 

found that it indicates the average path length traveled in the system by an average boundary 

inflow, and noted that like TST this measure was sensitive to n.  Han (1997) re-examined Finn’s 

average path length, suggesting that it should be called the flow multiplying ability of the system 

because it indicates the reutilization of energy–matter inputs into the system.  Jørgensen et al. 

(2000) used AGG to distinguish the organization of two hypothetical steady-state systems with 

four compartments each and identical total boundary flows. One system was a straight chain; the 

other had a number of additional connections which allowed recycling and changed the system 

into one strongly connected component.  As expected, the system with recycling had a larger 

AGG value. 

The ratio of indirect-to-direct flows (Indirect/Direct) is derived from an alternative 

decomposition of throughflows into boundary, direct, and indirect flows based on economic 

Input-Output Analysis (Leontief, 1966).  This analysis starts by finding a matrix N that maps 

inputs into throughflows such that NzT = .  T and z are known so we can simply solve for N.  

However, an alternative method of calculating N is informative.  The first step is to divide the 

observed flows by the donor compartment throughflow ( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

j

ij
ij T

f
)g(G ).  The elements of 

 are interpreted as the fractional transfer coefficients, or the probability that energy–matter 

entering j will flow to i over a direct pathway (i.e., pathway of length m = 1).  The elements gij 

are non-dimensional and range between 0 and 1.  Fractional transfer coefficients for flow from j 

nnG ×
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to i over indirect pathways (m > 1) are found by raising G to the power m, Gm.  Total node 

throughflow is recovered by post multiplying the convergent infinite series by the boundary 

inputs 

 ,  (6.2) { { z*GGGIT
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Boundary
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⎠
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where I = G0 is the identity matrix. The power series for thermodynamically conserved 

currencies converges to the transitive closure matrix, , because ecosystems 

are open and dissipative. Therefore, the (nij) elements are interpreted as the integral (boundary + 

direct + indirect) fractional transfer coefficients of energy–matter from j to i over all pathways of 

all lengths generated by a boundary input at j. 

1
ij )GI()n(N −−==

By distributing z and summing the resultant vectors, we create a whole system level 

partition of TST as follows 

 
{ 44 344 21321

IndirectDirectBoundary

z)GIN(GzIzTST ∑∑∑ −−++= . (6.3) 

Dividing both sides of (6.2) by TST generates:   

 
TST

z)GIN(
TST

Gz
TST

z
1 ∑∑∑ −−

++= ,  (6.4) 

where 
TST

z∑  is the boundary flow index (BFI), 
TST

Gz∑  is the direct flow index (DFI), and 

TST
z)GIN(∑ −−

 is the Indirect Flow Index (IFI).  These are dimensionless numbers between 0 

and 1 that indicate the proportion of boundary, direct, and indirect flow in the system.  These 

indices are similar in concept to Finn’s cycling index.  In Chapter 5 we observed that all cyclic 
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flow was necessarily indirect such that IFI ≥ FCI. Here, we introduce the ratio of FCI to IFI 

(FCI/IFI) to evaluate the significance of cycled flow in indirect flow.     

As observed in Chapter 4, there are at least two ways of calculating Indirect/Direct.  Fath 

and Patten (1999) calculate it by summing the appropriate fractional transfer coefficients, 

 
∑∑

∑∑ −δ−
=

)g(
)gn(

)1(DirectIndirect
ij

ijijij ,    (6.5) 

where  if i = j, otherwise it is zero. This approach tacitly assumes there is a unit input into 

every node.  Alternatively, Indirect/Direct can be calculated as  

1ij =δ

 
∑

∑ −−
=

Gz
z)GIN(

)2(DirectIndirect . (6.6) 

This calculation incorporates the magnitude and distribution of boundary inputs from the original 

model.  We use this comparative NEA to further evaluate the differences between these two 

calculations.  

6.3      RESULTS 

The models included in this study demonstrate a range of structure and throughflow 

organization. 

6.3.1      STRUCTURE 

While the 20 ecosystem energy flow models vary in size (6 ≤ n ≤ 125), connectance (0.05 

≤ C ≤ 0.33), and link density (2 ≤ L/n ≤ 15.75), all but one has one large non-trivial strongly 

connected component (#K; Table 6.2).  The Chesapeake Bay model (n = 36) has two strongly 

connected components: one with n = 6 and another with n =16.  The percentage of model 

components participating in the non-trivial strongly connected components ranges from a 
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minimum of 41% in the January model of the Sprague Point seagrass to a maximum of 100% in 

the Ythan estuary model (Figure 6.1A).  The Ythan estuary model was the only energy model 

analyzed to be fully contained in one strongly connected component.  On average, 75% (± 0.18 

SD) of the nodes were involved in a non-trivial strongly connected component.  The maximum 

rate of pathway proliferation (λ1(A)) ranged from 2.15 in the oyster reef model to 14.17 in the 

dry season of the mangrove model (Table 6.2).  These rates appear to be similar to link density 

(L/n; Figure 6.1B), which is the expected value for random digraphs (see Chapter 3).  However, 

when we compared the absolute difference between λ1(A) and L/n (d = | λ1(A)-L/n|) in each 

model to an ensemble of 1001 random digraphs with the same number of nodes and probability 

of connectance, we found that 11 of the 20 models were significantly different at α = 0.05 (Pr(d); 

Table 6.2).  This indicates that these 11 models have a structure unlikely to be created by random 

processes.        

Collectively, these structural measures indicate that while the networks as a whole were 

fairly sparsely connected in terms of connectance, many of the model nodes were connected by 

at least one cycle.  By definition a strongly connected component has at least one cycle that links 

all nodes in the component.  The maximal rates of pathway proliferation in the strongly 

connected components suggest the presence of multiple simple cycles (cycles without repeated 

nodes except the starting and ending point).  Given these structural results, we conclude that each 

of these models has the potential to have relatively large indirect flows.    

6.3.2      THROUGHFLOW 

Results of the throughflow analysis are summarized in Table 6.2.  As the model flows 

had different units, the magnitudes of TST and Boundary were highly variable, ranging from a 

minimum of 84 and 41 kcal m−2 d−1, respectively, in the oyster reef model to a maximum TST of 
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3,917,246 mg C−2 y−1 in the Ythan estuary and a maximum boundary flow of 888,791 mg C−2 y−1 

in the Narragansett Bay model.  These values are an important starting point for our analysis, but 

comparing them is uninformative.  The remaining throughflow measures are dimensionless ratios 

that are more comparable.  The proportion of TST derived from recycling (FCI) ranges from 

0.01 in the Sprague Point seagrass model to 0.51 in the Narragansett Bay model (Table 6.2).  It is 

perhaps surprising that the Ythan estuary model which was relatively well connected and 

completely encapsulated in a strongly connected component did not have a greater FCI.  It has 

the second largest FCI, but it is less than half of the Narragansett Bay model.  This reinforces the 

idea that system structure is a necessary, but not sufficient, element for ecosystem analysis.  

Flow and storage magnitudes and distributions in the network can be critical. 

Indirect/Direct was quite variable in these models, and the two methods of calculating it 

(6.5 and 6.6) generated different magnitudes (Figure 6.2).  More importantly the qualitative 

interpretation changed in two cases.  Indirect/Direct (1) (using equation 6.5) ranged from 0.35 to 

8.13.  In fourteen models this ratio was greater than unity, implying that indirect flows were a 

dominant fraction of the internal model flows.  However, in six models (Somme Estuary, Crystal 

River Marsh – control and thermally impacted, Sprague Point and Lighthouse Point seagrass 

beds, and the wet season graminoid marsh) Indirect/Direct (1) was less than unity.  

Indirect/Direct (2) (using equation 6.6) also suggests that indirect flows do not dominate in six of 

the models and has a minimum of 0.12 and maximum of 6.93 (Figure 6.3A).  With this measure, 

however, indirect flows dominate direct in the wet season graminoid marsh model, but not in the 

wet season cypress wetland model.  A scatter plot of Indirect/Direct (1) and (2) shows that in 

most cases the different measures generate similar results; the points are very close to the 
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expected 1:1 line (Figure 6.2A).  These results support the hypothesis that indirect flows tend to 

dominate direct flows in model ecosystems, as this was the case in 70% of the models. 

Network aggradation ranged from 1.62 in the Sprague Point seagrass model to 5.65 in the 

Narragansett Bay model.  This implies that the average input into the Sprague Point model did 

not make it to a second compartment, while in the Narragansett Bay model the average input 

traveled to five nodes before exiting the system.  Mean AGG for these 20 models was 2.59 (± 

0.93 SD).  It is interesting to note that the boundary flow and therefore the AGG values we report 

for the six models from the St. Marks National Wildlife Refuge do not match those reported by 

Baird et al. (1998).  Our boundary flow values are consistently higher, which causes our AGG 

numbers to be lower.  We are not sure what accounts for this difference. 

We chose to evaluate the relationship between Indirect/Direct and AGG using the second 

method of calculation (6.6), as this is consistent with Chapters 4 and 5 (Figure 6.2B).  AGG and 

Indirect/Direct (2) again appear to be linearly associated (AGG = 0.60 * Indirect/Direct (2) + 

1.65, R2 = 0.80, p<0.0001) and both parameters are statistically different from zero (p < 0.001).  

However, this association is weaker than reported in the Neuse River Estuary and Lanier models.  

The Narragansett Bay model has an Indirect/Direct (2) that is much larger than the other models 

and it is the only point to fall below the 1:1 line.  We conclude that while there remains some 

association between Indirect/Direct and AGG, it has changed from that seen in the Lake Lanier 

and Neuse River Estuary models and is not well represented by our simple linear regression.   

The partition of TST into boundary, direct, and indirect flows (6.4; Figure 6.3B) reveals 

that boundary flows were 50% or more of TST in five of these models, but never exceeded 62%.  

In the Narragansett Bay model boundary flows were only 18% of TST.  The Indirect Flow Index 

(IFI) ranged from 0.04 in the Sprague Point seagrass model to 0.72 in the Narragansett Bay 
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model.  It averaged 0.33 (± 0.15 SD).  The FCI/IFI ratio reveals that the proportion of indirect 

flows derived from cycling is fairly variable, ranging from 0.71 in the Narragansett Bay model to 

0.06 and 0.12 in the two wet and dry seasons of the graminoid marsh model (Figure 6.4).   

Our final analysis evaluated the relationship of Indirect/Direct (2) and the number of 

model nodes (n), connectance (C), maximal rate of pathway proliferation (λ1(A)), and the Finn 

cycling index (FCI; Figure 6.4).  Higashi’s algebra suggests that Indirect/Direct will tend to 

increase with n and C (Patten et al., 1990; Patten, 1991).  In Chapters 2 and 3 we hypothesized 

that Indirect/Direct would also tend to increase as the pathway proliferation increased.  However, 

we found no significant relationship between Indirect/Direct (2) and n, C, or λ1(A) in these 

models.  Indirect/Direct (2) does tend to increase with FCI (R2 = 0.86), although the Narragansett 

Bay model could be driving the relationship.  Without the outlying point, the association falls to 

(R2 = 0.49). 

6.4      DISCUSSION 

Results from this study raise three issues we address in this section.  First, we presented 

two methods of calculating the Indirect/Direct ratio and found they did not necessarily generate 

the same quantitative results and, while there was generally good qualitative agreement, in two 

cases the qualitative results changed.  Is more appropriate than another?  Second, our 

Indirect/Direct ratios – regardless of how calculated – show that indirect flows do tend to 

dominate direct flows in 70% of the models we investigated.  We take this as weak support for 

the second cardinal hypothesis of Holoecology – that indirect effects are dominant in ecosystems 

(Patten, in prep., see also Chapter 2).  These models require closer examinations to determine 

why.  As these models were not constructed with a fixed modeling criterion set for the purpose 

of comparative analysis, these results may be driven by modeling decisions, rather than actual 
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differences in ecosystem organization.  Finally, the relationship between Indirect/Direct and 

network aggradation needs further attention.  While the statistical relationship between the two 

variables seems to weaken as cycling decreases, our results are not clear. 

6.4.1      CALCULATING INDIRECT/DIRECT  

In this paper we contrast two methods of calculating Indirect/Direct (6.5 and 6.6). The 

first is reported in Fath and Patten (1999) in their review of the foundations of Network Environ 

Analysis (NEA).  The second method was introduced in Chapter 4.  Results of this study show 

that while in some cases the two methods generate similar values, in other cases the results are 

quite different.  

The first method tacitly assumes a vector of unit inputs into each node.  Therefore, the 

magnitude of total boundary inputs in this calculation is n, which is evenly distributed across all 

nodes.  When comparing Indirect/Direct from systems of different sizes, we might be concerned 

about the differences in assumed boundary input magnitudes.  The ratio construction – where 

this assumption is applied to the numerator and denominator – should effectively negate this 

issue.  This is why it is possible to compare Indirect/Direct between systems with different 

boundary inputs.  The more serious issue is the assumed even distribution of inputs, as it equally 

weights the network flows when this may not be the case in the observed input flow vector.  For 

example, the Narragansett Bay model only has inputs into three of its thirty-two compartments 

(Benthic Algae, Phytoplankton, and Detritus).  Even among these three compartments the total 

boundary input is unevenly distributed – 21%, 79%, and 0.6%.  This uneven distribution of 

inputs, propagated throughout the network, is responsible for the observed differences between 

the two methods of calculating Indirect/Direct.  
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One approach to use a “unit” vector of inputs and correct both the input magnitude and 

match their possibly heterogeneous distribution is to divide the elements of the input vector by 

the total boundary inputs (
∑

=

= n

ii
i

i
i

z

z
z ).  In all cases the resultant vector magnitude is unity, and 

the observed input flow distribution is retained.  When we did this for the models in our study 

and recalculated Indirect/Direct as in (6.5), substituting the implicit vector of ones with z , we 

recovered the exact values of Indirect/Direct (2). We conclude that Indirect/Direct (2) is a more 

appropriate measure of the ratio of indirect-to-direct flows because it more accurately captures 

the empirically observed input distribution.  This input distribution is significant because it 

differentially weights flow pathways in the model, affecting the ultimate flow partitions.  Direct 

and indirect flows are determined by both the internal system transfer efficiencies and the 

external environment that activates the system, driving it away from thermodynamic equilibrium.            

6.4.2      DOMINANCE OF DIRECT FLOW 

In 14 of the 20 models we investigated, indirect flows dominated direct.  This was 

apparent both in the ratio of indirect-to-direct flows (Table 6.2) and complete partition of 

throughflows into the boundary, direct, and indirect flow indices (Figure 6.1).  Patten (Patten, 

1983, 1985a; Higashi and Patten, 1989; Patten, 1998a, in prep.) argues this occurs because of the 

large number of indirect pathways which, while they may individually only transmit a small 

amount of indirect flow, are cumulatively quite powerful.  However, in six models direct flows 

were larger than indirect flows.  For this discussion, we will focus on the six models identified 

by Indirect/Direct (2) (e.g., Somme Estuary, Crystal River Marsh (control and thermally 

impacted), Sprague Point and Lighthouse Point seagrass beds, the wet season cypress wetlands, 

and the wet season graminoid marshes).  We wonder why this occurs.  In all six systems the 
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large numbers of indirect pathways were present; they all had a large non-trivial strongly 

connected component that encompassed a sizable fraction of the model compartments (>40%).  

In addition, these strongly connected components experienced pathway proliferation, as the 

proliferation rates λ1(A) were all larger than unity (2.15 ≤ λ1(A) ≤ 14.17).  As discussed in 

Chapter 3, this indicates that the model structure provided the opportunity for indirect flows to be 

significant components of TST.  This is true despite several of these models having relatively 

low connectivity.  However, the potential in the structure was not realized.  It appears that in 

these models the cyclic indirect pathways were not a significant component of TST.  For 

example, by comparison to the other five seagrass models explicitly constructed by Barid et al. 

(1998) for network analysis comparison, the Sprague Point seagrass model appears to have been 

operating not as a well integrated reticulate network, but as a leaky pipe.  The system seems to 

have shut off.  The Indirect/Direct (2) ratio is the lowest of the models examined at 0.12, and the 

IFI is only 0.01.  In contrast, boundary flow accounts for 62% of TST.  The vast majority of the 

energy flowing into the system is immediately lost from the system; the internal transfer 

coefficients must be low.  This point is echoed by the network aggradation of 1.62, indicating 

that the average input does not even make it to a second node before exiting the system.  

However, there is not an obvious consistent pattern that demarcates the six systems other than 

Indirect/Direct (2).  The network aggradation measures of the six ecosystems are low, but there 

are systems with equally low values of AGG that still have Indirect/Direct > 1 (e.g., the oyster 

reef model). The same can be said of the FCI.  Understanding why these six systems have so 

little indirect flow will require closer investigation of the model details than is available in this 

study.   
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6.4.3      INDIRECT/DIRECT VS. AGGRADATION 

Finally, we turn our attention to the relationship between Indirect/Direct and AGG.  The 

relationship between Indirect/Direct and AGG was not clarified by the statistical approach used 

in this paper, although the strength of their association appears to decline as the degree of cycling 

falls.  Here, we consider the theoretical minimum and maximum values of Indirect/Direct and 

AGG to clarify their relationship.   

TST achieves a minimum when the nodes of a network are 100% dissipative (internal 

transfer coefficients are zero), which is equivalent to a structurally disconnected system.  In this 

case, all boundary inputs are immediately lost to the external environment in a steady state 

system.  Using the definition, TST can be partitioned into boundary and internal flows as  

 . (6.7) 
{ 43421
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n

1i

n

1j
ij

Boundary

n

1i
i fzTST ∑∑∑

= ==

+=

If the internal flows are zero ( ) then TST = Boundary.  In this case, network 

aggradation reduces to unity because the internal flows are zero and we are left with 

Boundary/Boundary.  When there is at least one connection between compartments, what Patten 

et al. (1976) identify as a causal bond essential to system formation, TST must then exceed 

Boundary and network aggradation exceeds unity.   
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Indirect/Direct is a ratio of a within-system flow decomposition based on pathway types.  

To show this more clearly, we can set the right hand side of the throughflow partition in 6.7 

equal to the right hand side of 6.3, such that  

 . (6.8) 
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As I is the identity matrix, . These terms then cancel and we are left with  
{

Boundary

n

1i
i Izz ∑∑ =

=

 . (6.9) 
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Reconsidering our hypothetical system in which fij = 0 ( j,i∀ ), it is now clear that Direct = 

Indirect = 0, and Indirect/Direct is mathematically indeterminate but physically does not exist.  

Adding only one flow from node j to i will cause fij > 0 and Direct > 0, but Indirect remains 0. 

Thus, in this hypothetical system, Indirect/Direct = 0 while AGG > 1.  These exercises 

demonstrate that while Indirect/Direct might be driven by similar elements of ecosystem 

organization, the measures start at different points.  This difference is reflected to some degree in 

the intercept values of the statistical models. 

Alternatively, we consider the maximum values of Indirect/Direct and AGG.  This occurs 

in systems in which indirect flows are a large proportion of TST, and the boundary and direct 

flow indices are necessarily small (6.4).  In this case, the indirect flows will closely approximate 

TST such that Indirect ≈ TST.  A large Indirect Flow Index can only occur in systems where the 

internal flow transfer efficiencies are very large.  When this happens, the vast majority of 

energy–matter entering the system will be passed into the system via the direct flow pathways, 

and therefore Direct ≈ Boundary.  These relations account for why TST/Boundary ≈ 

Indirect/Direct in the Neuse River Estuary (Chapter 4), which was a highly retentive system.  

More generally, a large Indirect Flow Index implies that energy–matter entering the system as 

boundary flows remain in the system for an extended period of time.  We would expect this to be 

reflected in the aggradation ratio, which is what happens.   
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We conclude that Indirect/Direct and the aggradation ratio necessarily start at different 

points (min(Indirect/Direct) = 0, min(AGG) = 1), but converge as the system transfer efficiencies 

increase (Indirect/Direct ≈ AGG).     

6.5        SUMMARY 

The idea that Indirect/Direct and AGG are strongly associated, as suggested by the results 

in Chapters 4 and 5, is compelling, and it is reasonable that alternate indicators of ecosystem 

organization might measure different aspects of the same underlying system elements 

(Christensen, 1995; Fath et al., 2001, see also Chapter 5).  The relationship between network 

aggradation and the ratio of indirect-to-direct effects is exciting, however, because one measure 

has a strong thermodynamic interpretation, while the other is wholly derived from network 

analysis.  Linking these measures offers the possibility of bringing together these two 

approaches.  Our analysis partially decouples these measures of ecosystem growth and 

development.  We argue that they must start at different values, but necessarily converge as the 

internal fractional transfer coefficients increase.  In this work, we also evaluate alternate methods 

of calculating Indirect/Direct and argue that it is more appropriate to make this calculation using 

input vectors that reflect the observed distribution of inputs.  Finally, we identify six ecosystem 

models in which Indirect/Direct is less than unity, but generally provide additional evidence 

supporting the hypothesis that indirect flows tend to dominate direct flows in model ecosystems.            
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6.8      TABLES 

Table 6.1: Twenty ecosystem models of energy flux 

Model # Name Ecosystem Type Location Flux Units Spatial Extent References
1 Oyster Reef Community Oyster Reef South Carolina kcal m−2 d−1 NR* Dame and Patten, 1981
2 Cheasapeake Bay, Summer Bay mesohaline region of Chesapeake Bay, 

Maryland
mg C m−2 summer−1 598,000 ha Baird and Ulanowicz, 1989

3 Narragansett Bay Bay Narragansett Bay, Rhode Island mg C m−2 y−1 NR Monaco and Ulanowicz, 1997
4 Ythan Estuary Estuary Aberdeenshire, Scotland mg C m−2 y−1 256 ha Baird and Milne, 1989
5 Somme Estuary Estuary Northern France mg C m−2 y−1 NR Rybarczyk, 2003
6 Crystal River Marsh, Control Tidal Marsh Crystal River, Florida mg C m−2 d−1 NR Ulanowicz, 1986
7 Crystal River Marsh, Thermally Impacted Tidal Marsh Crystal River, Florida mg C m−2 d−1 NR Ulanowicz, 1986
8 Seagrass, Live Oak Island, January Seagrass St. Marks National Wildlife Refuge, 

Apalachee Bay, Florida
mg C m−2 d−1 4.5 ha Baird et al., 1998

9 Seagrass, Live Oak Island, February Seagrass St. Marks National Wildlife Refuge, 
Apalachee Bay, Florida

mg C m−2 d−1 4.5 ha Baird et al., 1998

10 Seagrass, Wakulla Beach, January Seagrass St. Marks National Wildlife Refuge, 
Apalachee Bay, Florida

mg C m−2 d−1 4.5 ha Baird et al., 1998

11 Seagrass, Wakulla Beach, February Seagrass St. Marks National Wildlife Refuge, 
Apalachee Bay, Florida

mg C m−2 d−1 4.5 ha Baird et al., 1998

12 Seagrass, Sprague Point, January Seagrass St. Marks National Wildlife Refuge, 
Apalachee Bay, Florida

mg C m−2 d−1 4.5 ha Baird et al., 1998

13 Seagrass, Lighthouse Point, February Seagrass St. Marks National Wildlife Refuge, 
Apalachee Bay, Florida

mg C m−2 d−1 4.5 ha Baird et al., 1998

14 Florida Bay, Dry Season Bay South Florida mg C m−2 y−1 2,200,000 ha Ulanowicz et al., 1998
15 Florida Bay, Wet Season Bay South Florida mg C m−2 y−1 2,200,000 ha Ulanowicz et al., 1998
16 Cypress Wetland, Wet Season Forested Wetland Big Cypress Natural Preserve, Florida mg C m−2 y−1 295,000 ha Ulanowicz et al., 1997
17 Graminoid Marshes and Sloughs, Dry Season Freshwater Wetland Everglades, Florida mg C m−2 y−1 214,000 ha Ulanowicz et al., 2000
18 Graminoid Marshes and Sloughs, Wet Season Freshwater Wetland Everglades, Florida mg C m−2 y−1 214,000 ha Ulanowicz et al., 2000
19 Mangrove, Dry Season Mangrove South Florida mg C m−2 y−1 171,000 ha Ulanowicz et al., 1999
20 Mangrove, Wet Season Mangrove South Florida mg C m−2 y−1 171,000 ha Ulanowicz et al., 1999  

Model # is an identification number used on other tables and figures; NR indicates the spatial extent of the study was not 

reported.  
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Table 6.2: Network Environ Analysis of 20 energy/carbon ecosystem models 

Model # n C L/n λ1(A) d TST Boundary BFI DFI FCI IFI AGG Indirect/Direct (1) Indirect/Direct (2)
1 6 0.33 2.00 2.15 0.15 0.00 * 84 41 0.50 0.20 0.11 0.31 2.02 1.53 1.58
2 36 0.09 3.39 2.85 0.54 0.00 * 3,227,453 888,791 0.28 0.19 0.19 0.53 3.63 3.07 2.76
3 32 0.15 4.94 5.99 1.05 0.33 3,917,246 693,846 0.18 0.10 0.51 0.72 5.65 8.13 6.93
4 13 0.23 3.00 3.23 0.23 0.01 * 4,182 1,259 0.30 0.24 0.24 0.46 3.32 2.15 1.89
5 9 0.30 2.67 2.53 0.14 0.00 * 2,035 876 0.43 0.33 0.14 0.24 2.32 0.67 0.74
6 21 0.19 3.90 4.70 0.79 0.57 15,063 7,358 0.49 0.31 0.07 0.20 2.05 0.62 0.67
7 21 0.14 2.90 3.87 0.97 0.20 12,032 6,018 0.50 0.29 0.09 0.21 2.00 0.69 0.71
8 51 0.08 3.86 3.68 0.18 0.07 1,316 515 0.39 0.23 0.13 0.38 2.56 2.09 1.70
9 51 0.08 4.27 3.83 0.44 0.68 1,591 602 0.38 0.23 0.11 0.39 2.64 1.73 1.66
10 51 0.07 3.55 3.73 0.18 0.08 1,383 603 0.44 0.25 0.09 0.31 2.29 1.40 1.24
11 51 0.08 3.94 3.67 0.27 0.00 * 1,921 801 0.42 0.25 0.08 0.33 2.40 1.37 1.30
12 51 0.05 2.49 3.42 0.93 0.22 12,651 7,809 0.62 0.34 0.01 0.04 1.62 0.35 0.12
13 51 0.08 3.98 3.72 0.26 0.00 * 2,865 1,433 0.50 0.29 0.04 0.21 2.00 0.74 0.71
14 125 0.13 15.75 11.01 4.74 0.00 * 1,779 548 0.31 0.30 0.08 0.39 3.25 1.45 1.29
15 125 0.12 15.50 10.97 4.54 0.00 * 2,722 739 0.27 0.27 0.14 0.46 3.69 1.91 1.73
16 68 0.12 8.01 6.85 1.17 0.00 * 2,572 1,419 0.55 0.28 0.04 0.17 1.81 1.71 0.62
17 66 0.18 12.02 11.06 0.96 0.00 * 7,520 3,473 0.46 0.22 0.04 0.31 2.17 1.00 1.41
18 66 0.18 12.02 11.06 0.96 0.00 * 13,677 6,272 0.46 0.25 0.02 0.30 2.18 0.81 1.20
19 94 0.15 14.24 14.17 0.08 0.38 3,272 1,531 0.47 0.20 0.10 0.34 2.14 1.74 1.70
20 94 0.15 14.26 14.16 0.10 0.29 3,266 1,532 0.47 0.20 0.10 0.33 2.13 1.69 1.69

Pr(d)

 

Model # refers to the model identification number on Table 6.1; n is the number of nodes or compartments, C = L/n2 is 
connectance where L is the number of observed flows;  L/n is link density; λ1(A) is the maximum rate of pathway proliferation; d = | 
λ1(A) – L/n|; Pr(d) is the fraction of an ensemble of 1001 random digraphs in which d is greater than or equal to that observed in the 
original model; #K is the number of non-trivial strongly connected components; %K is the proportion of model nodes involved in a 
strongly connected components; TST is total system throughflow (units as on Table 6.1); Boundary is the total boundary input (units 
as on Table 6.1); FCI is the Finn Cycling Index; IFI is the Indirect Flow Index; FCI/IFI is the proportion of indirect flow derived from 
cycling; AGG = TST/Boundary is network aggradation; Indirect/Direct (1) and Indirect/Direct (2) are the ratios of indirect-to-direct 
flows calculated using alternative methods (see text)  
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6.9      FIGURE LEGENDS 

Figure 6.1:  Network structure of 20 ecosystem models of energy/carbon flux.  A) Proportion 

of model nodes involved in a strongly connected component (%K).  B) 

Relationship between the maximal rate of pathway proliferation (λ1(A)) and link 

density (L/n).  Diagonal line represents the expected relationship in random 

digraphs. 

Figure 6.2: Relationships between A) alternative methods of calculating the indirect-to-direct 

flow ratio (Indirect/Direct) and B) Indirect/Direct and network aggradation 

(AGG) in 20 ecosystem models of energy flux.  Indirect/Direct (1) is calculated 

using the formula presented in Fath and Patten (1999) and Indirect/Direct (2) is 

calculated as in Chapter 4.  Dark diagonal lines represent the 1:1 line where the 

compared indicators would be identical.  Lighter gray lines represent the point at 

which Indirect/Direct or AGG equals unity.  Above (or to the right of) this line 

indicates indirect flows dominate direct flows for Indirect/Direct.  It identifies the 

theoretical minimum of AGG.  The dashed line in B) is the ordinary least squares 

linear regression (AGG = 0.60 * Indirect/Direct (2) + 1.65, R2 = 0.80, p<0.0001).  

Numbers in the figure correspond to Model # in Table 6.1. 

Figure 6.3: Indirect flows in 20 ecosystem models of energy/carbon flux.  A) Ratio of 

indirect–to–direct flow partitions of TST (method 2, see text).  In 14/20 models, 

Indirect/Direct (2) is greater than one (marked by thin horizontal line), indicating 

the dominance of indirect effects.  B) Partition of TST into boundary, direct, and 

indirect flow components.  Model numbers correspond to Table 6.2.  Underlined 

  

200



 

models represent the same ecosystem at different points in time, space, or under 

different conditions.  See Table 6.2 and text for details. 

Figure 6.4: Proportion of indirect flow derived from recycling in 20 ecosystem models of 

energy/carbon flux.  This is the ratio of the Finn Cycling Index (FCI) divided by 

the Indirect Flow Index (IFI). 

Figure 6.5: Relationships between Indirect/Direct (2) and A) the number of nodes (n), B) 

connectance (C), C) maximum rate of pathway proliferation (λ1(A)), and D) the 

Finn Cycling Index (FCI) in 20 ecosystem models of energy/carbon flux.  The 

simple linear regression lines in A), B), and C) are not statistically significant; in 

D) R2 = 0.86 including model 3 (Narragansett Bay) and R2 = 0.49 with out it. 
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Figure 6.1 
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Figure 6.2 
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Figure 6.3 
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Figure 6.4 
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Figure 6.5 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

1. H1 

2. H2 

3. H3 

4. H4 

5. H5 

6. H6 

7. H7 
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Here I summarize the key results of the individual chapters, discuss their significance, 

and develop some of their broader implications. 

7.1 SUMMARY 

The overarching goal of this work was to contribute to a deeper understanding of the 

processes that create, constrain, and sustain ecological systems.  In this effort, we choose to 

focus on the role of ecosystem architecture (form and function) in the development of indirect 

effects because they appear to be key components of ecological interactions and evolution.  

Indirect effects have been distinguished into several types; our investigations focused on a 

category which results from energy–matter transactions between organisms and their 

environments, termed environ indirect effects.   

This dissertation is comprised of two chapters that focus on ecosystem structure (2 and 

3), two chapters that examine the effect of functional variability while structure is constant (4 

and 5), and one chapter that investigates the relative role of structure and function in the 

development of environ indirect effects (6).  In Chapters 2 and 3, my coauthors and I probed two 

structural patterns: pathway proliferation and strongly connected components.  Pathway 

proliferation is the tendency for the number of pathways in an ecosystem to increase without 

bound as pathway length increases, and strongly connected components are a subset of system 

elements in which it is possible to get from any element to another.  In Chapter 2, we introduced 

a measure of whole-system pathway proliferation and demonstrated it is sensitive to the number 

of model nodes, adjacent connections, and their arrangement.  We examined the mathematical 

foundations for a node–node measure of the pathway proliferation rate in Chapter 3, and in the 

process revealed a form of system modularity (a hierarchical system subdivision into more or 

less interacting subsystems) based on strongly connected components.  Further, our work found 
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that the majority of 17 large empirically based food-web models contained one or more strongly 

connected components, each exhibiting pathway proliferation.  These structures are ecologically 

relevant because they create channels for autocatalytic (positive) and cybernetic (negative) 

feedback and provide conditions we expect to increase the likelihood that indirect flows will 

dominate direct flows.        

In Chapters 4 and 5, we delved into two case studies of Indirect/Direct in ecosystem 

models of the Neuse River Estuary and Lake Sidney Lanier, respectively.  In both chapters we 

examined multiple models of the system that have a consistent structure, but differ in their flow 

and storage magnitudes.  In Chapter 4, we examined a sixteen season time series of nitrogen flux 

in the Neuse River Estuary.  Our results revealed surprisingly little seasonal and no significant 

interannual temporal variation in the proportion of total system nitrogen throughflow derived 

from indirect flows (indirect flow index); indirect flows were consistently large.  This system 

appears to be tightly bound by environ indirect effects, largely generated by microbially 

mediated nitrogen recycling.  In Chapter 5, we inspected the sensitivity of multiple measures of 

ecosystem growth and development – including Indirect/Direct – to uncertainty in the flow and 

storage magnitudes in a model of phosphorus flux in Lake Sidney Lanier.  Like the Neuse River 

Estuary models, network structure remained constant while functional values varied.  In this case 

the functional variability was generated in part by inadequate empirical data.  Our analysis 

showed that in the population of plausible models (based on known empirical data), the 

ecosystem indicators were differentially robust to model uncertainty, and their common variation 

could be projected onto two latent factors.  The indirect flow index and network homogenization 

were the most robust indicators, and we tentatively interpreted the two latent factors as 1) system 

integration, and 2) environmental (boundary) influences.  As in the sixteen seasons of the Neuse 
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River Estuary, indirect flows were the dominant component of total system throughflow in each 

of the plausible parameterizations.       

Building on the separate roles of structure (Chapters 2 and 3) and function (Chapters 4 

and 5), in Chapter 6 we assessed their relative roles in the development of Indirect/Direct in 20 

ecosystem models of energy flux drawn from the literature.  We found that while certain 

structural elements of these models were variable (number of nodes and connectance), they all 

had at least one strongly connected component that encompassed a large fraction of the model 

compartments and exhibited some degree of pathway proliferation.  Given these structural 

elements, we expected indirect flows to be consistently dominant.  We learned, however, that 

structure is necessary, but not sufficient for Indirect/Direct to exceed unity.  It creates the 

potential, but the functional information dictates how the structure is utilized.  In the majority of 

the models indirect flows were dominant, but we found that in six models Indirect/Direct did not 

exceed unity. The number of model compartments and connectivity did not appear to influence 

Indirect/Direct.  In this chapter, we also investigated the relationship between Indirect/Direct and 

a thermodynamic indicator proposed by Patten – dissipation specific total system throughflow – 

termed network aggradation (Jørgensen et al., 2000).  Analysis of the Neuse and Lanier models 

showed a strong association between these two variables (R2 = 0.99 and R2 = 0.96, respectively).  

This statistical relationship remained in the energy model data set, but was weaker (R2 = 0.80, R2 

= 0.52 when a potential outlier was excluded).   Further consideration revealed that these 

measures necessarily start at different points, but converge as the within-system transfer 

efficiencies increase.  Model structural differences appeared to have little impact on 

Indirect/Direct. Finally we evaluated alternative methods of calculating Indirect/Direct and 

concluded that it is important to account for the distribution of boundary inputs in the 
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calculation.  This is because indirect flows are generated by the integration of the internal system 

organization and the environmental boundary flows that activate the system.     

7.2 CONCLUSIONS 

From these results, conclusions can be drawn about system formation and the role of 

ecosystem architecture in the development of indirect effects.  

Consideration of these results in a broader context reveals thier implications for our 

understanding of system formation in general, and ecosystems in particular.  There appear to be 

at least two critical points in system formation. Patten et al. (1976) define a system generally 

“…as a collection of interacting or interdependent objects” (p. 465).  They then argue that the 

creation of one causal bond between two objects is a critical point in system formation.  This 

connection formally binds the two elements into a system, and generates the possibility of new 

emergent properties.  Increased total system throughflow (“power”) and growth away from 

thermodynamic equilibrium are examples.  Our results suggest a second critical point occurs 

when a causal cycle forms, creating a strongly connected component.  Again, at this second 

critical point new and novel system properties can emerge.  Cycle formation creates a route for 

the development of cybernetic feedbacks to propagate throughout the strongly connected 

component.  It is also possible for this strongly connected component to act as a positive 

feedback autocatalytic cycle – the subsystem catalyzes its own activity.  Building on the work of 

Ulanowicz (1983; 1986; 1997), we argue in Chapter 3 that this is likely to occur in ecological 

networks.  Ulanowicz (1986; 1997) further identifies the novel properties that can emerge in 

autocatalytic cycles, and thus in ecosystems.  The significance of recycling is recognized in the 

ecological literature (e.g., Odum, 1953; Odum, 1969; Finn, 1977; Patten and Odum, 1981; Finn, 
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1983; Patten, 1985; Patten et al., 1990; Stone and Berman, 1993; Porter et al., 1996), but here I 

argue that it is perhaps more fundamental to system formation than perhaps previously realized.                 

The focus of this dissertation work is on the role of ecosystem architecture in the 

development of environ indirect effects.  We found that while there are logical reasons for 

network forms, like strongly connected components and pathway proliferation, to be significant 

in the creation of indirect flows, they only enhanced the possibility.  Realized indirect flows are 

finally determined by the heterogeneous magnitude and distribution of flow across the structure.  

In summary, ecosystem structure is necessary but not sufficient to determine the significance of 

indirect flows in the system.  The distribution of internal and boundary flows is critical.  Though 

Frank Lloyd Wright was discussing architecture, his statement that form and function are one 

may be equally correct when applied to ecosystems.   

In closing, the research presented in this dissertation adds to our growing theoretical 

understanding of ecosystem organization and transformation.  It characterizes new aspects of the 

role ecosystem architecture plays in the development of indirect effects, and extends the 

methodology of Network Environ Analysis.  These fundamental developments should provide a 

firmer foundation for critical environmental management concepts including ecosystem health, 

integrity, and sustainability.  However, there remains much work to fully understand the causes 

and consequences of ecosystem organization and transformations.   
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1 Fath, B.D. and S.R. Borrett.  In press.  Environmental Modelling & Software.  Reprinted here with 

permission of publisher. 

214



 

  

ABSTRACT 

Network Environ Analysis is a formal, quantitative methodology to describe an object’s 

within system “environ”ment (Patten 1978a).  It provides a perspective of the environment, 

based on general system theory and input-output analysis.  This approach is one type of a more 

general conceptual approach called ecological network analysis.  Application of Network 

Environ Analysis on ecosystem models has revealed several important and unexpected results 

(see e.g., Patten 1982, 1985, Higashi and Patten 1991, Fath and Patten 1999), which have been 

identified and summarized in the literature as network environ properties.  To conduct the 

analysis one needs ecosystem data including the intercompartmental flows, compartmental 

storages, and boundary input and output flows.  The software presented herein uses these data to 

perform the main network environ analyses and environ properties including unit environs, 

indirect effects ratio, network homogenization, network synergism, network mutualism, mode 

partitioning, and environ control.  The software is available from The MathWorks MATLAB® 

Central File Exchange website 

(http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do). 

215

http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do


 

  

A.1      INTRODUCTION 

Ecological Network Analysis (ENA) is a mathematical methodology to study within 

system interactions for a given system structure (connectance pattern), function (flow regime), 

and boundary input.  One could say that ENA is a formal realization of synecology, which is 

mostly concerned with interrelations of material, energy and information among system 

components as opposed to autecology, which focuses on the individual organisms and 

populations themselves.  ENA starts with the assumption that a system can be represented as a 

network of nodes (vertices, compartments, components, storages, objects, etc.) and connections 

between them (arcs, links, flows, etc.).  In ecological systems the connections are often based on 

the flow of conservative units such as energy, matter, or nutrients between the system 

compartments.  If such a flow exists, then we say there is a direct transaction between the two 

connected compartments.  These direct transactions give rise to both direct and indirect relations 

between all the objects in the system.  Network analysis provides a system-oriented perspective 

because it is based on uncovering patterns and influences among all the objects in a system.  

Therefore, it gives a view on how components are tied to a larger web of interactions. 

The intellectual lineage for Ecological Network Analysis comes from economics, which 

developed the ability to quantify indirect monetary flows in economic systems.  Hannon (1973) 

first applied economic input-output analysis (Leontief 1951, 1966) to investigate flow 

distribution in ecosystems.  His models were linked by the energy flow through the food web and 

he pursued this line of research primarily to determine interdependence of organisms in an 

ecosystem based on their direct and indirect energy flows.  Several formulizations of ENA have 

arisen including Embodied Energy Analysis (Herendeen 1981, 1989), Ascendency Analysis 
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(Ulanowicz 1980, 1986, 1997) and Network Environ Analysis (Patten 1978a, 1981, 1982, 1985, 

in prep.). 

A recent paper by Allesina and Bondavalli (2004) presented a user friendly, Windows-

based version of Ascendency Analysis (Ulanowicz 1982, 1986, 1997).  That paper contributes an 

important role to increase the visibility and usability of that specific network methodology.  In a 

similar vein, we hope to increase the exposure and facilitate the use of Network Environ 

Analysis by presenting a MATLAB® function (m-file) to calculate the basic environ parameters 

and properties. 

A.2      NETWORK ENVIRON ANALYSIS 

There has been much confusion regarding environment as a concept and how one defines 

it.  On the most basic level, environment is all that is external to an object.  This has led to the 

standard object–environment duality where emphasis is placed on the direct flows that come into 

contact with the object.  This has been carried so far as to consider all indirect flows as 

nonrelevant or historical, suggesting that including them would lead to an “infinite regress” 

(Mason and Langenheim 1957).  Another interpretation of environment, based on an object 

embedded in a system, includes the summary contribution of the within-system flows that affect 

that object.  In other words, the environment of an object within a specified system (and all 

objects are parts of a system) can be refined to recognize the special relationship an object has 

with the other objects within the system boundary.  For distinction, Patten (1978a) termed this 

second, within-system environment the object’s “environ.”  An object’s environ ends at the 

system boundary.  Objects and connections in the external environment, beyond the system 

boundary, are not distinguished so exchanges between them are not material to the analysis.  

Exchanges across the boundary of the system with the external environment are deemed inputs 
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or outputs.  One important aspect of environ theory is an explicit representation of the two 

environs, input and output, for each object.  Furthermore, it is possible to quantify the environs, 

and thus, the direct and indirect effects between any two objects in the system.  In principle, 

environ analysis can be applied to a system as simple as a pair of interconnected objects.  In 

practice it has been most readily applied to models of entire ecosystems. 

Patten (1978a) introduced a systems theory of the environment and put forth three 

foundational tenets.  First, each object has both an input environ, those flows introduced at the 

system boundary leading up to the object, and an output environ, those flows emanating from the 

object back to the other system objects before exiting at the system boundary.  Second, the 

purpose of a system boundary is to provide a reference state for the system of study, without 

which environ analysis is impossible because the analysis collapses back down to the object’s 

boundary.  A system boundary is necessary to distinguish between the system’s environment (the 

infinite regress) and its component objects’ environs (within system processes).  The third key 

realization is that the individual environs (and the flow carried in each one) are unique such that 

the system comprises the set union of all environs of each orientation (input or output), which in 

turn partition the system level of organization. 

Network Environ Analysis has also been a fruitful way of investigating system level 

properties of ecosystems.  In particular, a series of “network statistics” such as indirect effects 

ratio, homogenization, synergism, and mutualism have grown up around this analysis that 

express the role of each entity in a larger system.  See Patten (in prep.), Fath and Patten (1999a), 

and Fath (2004) for further details regarding these properties and the history of Network Environ 

Analysis. 
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The purpose of this paper is to document software to calculate input and output environs 

and several of the other basic network properties.  We first briefly describe the methodology and 

network properties.  We then introduce the software, which is available from The MathWorks 

MATLAB® Central File Exchange website 

(http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do) and reproduced in 

Appendix A.A.  Appendix A.B gives the program output for a well-studied example of an oyster 

reef model (Dame and Patten 1981).  In Appendix A.C, we compile a glossary for the Network 

Environ Analysis notation and in Appendix A.D a glossary for common MATLAB notation. 

A.3      METHODOLOGY 

A.3.1      TERMS AND NOTATIONS 

The software introduced in this paper summarizes algorithms for the well-documented 

methodology of Network Environ Analysis (Patten 1978a, 1982, 1985, in prep., Matis and Patten 

1981, Patten et al. 1990, Fath and Patten 1999a).  In Network Environ Analysis, systems are 

partitioned into compartments and a conservative substance such as energy, nitrogen, or 

phosphorus is propagated mathematically through the interconnected network.  Let i, j = 1, ..., n 

represent n storage compartments (nodes) within an open physical system demarcated from its 

surroundings by a boundary across which conservative energy–matter is exchanged.  The 

environment is traditionally indexed by 0, however, in the MATLAB® code environment is 

indexed as n+1 because the software does not allow a zero index.  Within-system connections are 

expressed in an adjacency matrix, A=(aij), corresponding to the model structure, where aij=1 if 

there is an observed flow from compartment j to compartment i, and aij=0 if there is no flow.  

Boundary transfers, zj0 (or just zj) = input to j, y0i (or yi) = output from i, and internal exchanges 

between compartments, fij = flow directed from j to i, comprise a set of transactive flows, or 
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transactions, meaning the transferred quantities are conserved.  Let the ordered pairs (i, j), (j, 0) 

and (0, i) be flow arcs, j → i, 0 → j, and i → 0 carrying the corresponding flows fij, zj, and yi.  

Networks are a synthesis of such binary flows.  Inputs (zj) or flows (fij) retained in receiving 

compartments over time become storages (xi), and storage at i, say, released as flow to j or the 

environment, respectively, becomes flow (fji) and output (yi).  The sum of flows into or out of the 

i'th compartment at any point in time is throughflow, Ti
(in) and Ti

(out), given by: 

T z fi
in

i ij
j

n
( ) = +

=
∑

1
 and T f yi

out
ji

j

n

i
( ) = +

=
∑

1
. 

At steady state, compartmental inflows and outflows are equal such that dxi/dt = 0, and 

therefore, incoming and outgoing throughflows are equal: Ti
(in) = Ti

(out) ≡ Ti.  This notation is 

used to develop a structural analysis, and four functional analyses (flow, storage, utility, and 

control analysis); the later two functional analyses can be derived from either flows or storages. 

A.3.2      STRUCTURAL ANALYSIS 

Structural analysis provides important insight into the pattern and connectivity of a 

model.  Path analysis is one type of structural analysis in Network Environ Analysis that 

enumerates pathways of a various lengths between components and the rate at which the number 

of pathways increases as path length increases.  The analysis is performed on the adjacency 

matrix, A=(aij), of the model.  It is a property of matrix multiplication that Am gives the number 

of paths of length m between two components, i and j in the model.  In systems with feedback 

(i.e., all realistic ecological models), the number of pathways increases as m increases; therefore, 

Am

m=

∞

∑
0

is a divergent series.  This phenomenon is termed pathway proliferation in Network 

Environ Analysis.  The proliferation rate is a significant system attribute because it describes the 
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growth rate of indirect pathways, ultimately describing the number of pathways available for 

transactions and relations (Borrett and Patten 2003).  Like the population growth rate in a Leslie 

Matrix (Caswell 2001), the pathway proliferation rate (aij
(m+1)/aij

(m) as m→∞) is given by the 

largest eigenvalue of A (Fath 1998).  The software returns the adjacency matrix, the pathway 

proliferation rate, the number of network nodes (n), the proportion of direct connections 

completed or the network connectance (L/n2), and the link density (L/n), where L= aij
i j

n

, =
∑

1
. 

A.3.3      FUNCTIONAL ANALYSIS 

Throughflow, Storage, Utility, and Control are four types of functional analysis used in 

Network Environ Analysis, each providing different insights into a system.  Throughflow 

analysis is similar to input–output analyses performed by other ENAs, but storage, utility, and 

control analyses are unique to Network Environ Analysis.  Here we describe storage analysis in 

detail, while the others follow as analogues. 

A.3.3.1      STORAGE ANALYSIS 

Nondimensional, storage-specific, output-oriented, intercompartmental flows are given 

by pij = cijΔt, for i ≠ j, where, cij = fij/xj; and for i = j, pii = 1 + ciiΔt, where cii = –Ti/xi (Matis and 

Patten 1981).  The dimensional quantities cii and cij are elements of a Jacobian "community" 

matrix, C=(cij).  This matrix type is typically employed in population–community ecology for 

stability or food-web analyses.  By introducing small enough time steps Δt into the ciiΔt and cijΔt 

values, dimensionless pii and pij quantities are obtained that lie in the range 0 ≤ pii, pij ≤ 1, and 

thus are interpretable as probabilities (Barber 1978).  From the matrix P=(pij) of such 
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probabilities, a dimensionless integral storage intensity matrix Q=(qij) can be computed as the 

convergent power series: 

 

Q = P0 + P1 + P2 + P3 +... + Pm + ... = (I – P)–1 (A.1) 

 

where P0 = I is the identity matrix.  The m'th order terms, m = 1, 2,..., account for 

interflows over all pathways in the system of lengths m, ∀m.  In so doing the network has a 

graph theory property known as transitive closure (Patten et al. 1976).  Input-oriented, storage-

specific, intercompartmental flows are given by p'ij = c'ijΔt, where, for i ≠ j, c'ij = fij/xi, and for i = 

j, p'ii = 1 + c'iiΔt, where c'ii = –Ti/xi (MATLAB® uses P' to denote the transpose of P, therefore 

we use an additional “P” to designate “prime” such that P' becomes PP, and Q' becomes QP 

below, etc. in the code).  Note the output-oriented values were normalized by the donating 

compartment storage, xj, and the input-oriented values by the receiving compartmental storages, 

xi.  From the matrix P'=(p'ij), a dimensionless, integral, input-oriented, storage intensity matrix 

Q'=(q'ij) can be computed: 

 

Q' = (P')0 + (P')1 + (P')2 + (P')3 +... + (P')m + ... = (I – P')–1.  (A.2) 

 

The nondimensional output-oriented integral storage matrix Q in (A.1) can be 

redimensionalized by multiplying by the input vector, z and the time step, Δt, such that x=QzΔt; 

and the nondimensional input-oriented integral storage matrix Q' in (A.2) can be 

redimensionalized by pre-multiplying by the output vector, y and the time step, Δt, such that 

x=yQ'Δt (order of multiplication for the scalar time step is irrelevant).  In some cases, it is also 

222



 

  

useful to examine the dimensional form of the integral matrix, which we include as S=QΔt.  The 

software returns C, C', P, P', Q, and Q', S, and S'. 

A.3.3.2      THROUGHFLOW ANALYSIS 

Similar to the case for storage analysis, nondimensional, output-oriented, 

intercompartmental flows are given by, gij = fij/Tj; and, input-oriented, intercompartmental flows 

are given by, g'ij = fij/Ti.  The dimensionless gij and g'ij quantities lie in the range 0 ≤ gij, g'ij ≤ 1, 

and thus are interpretable as probabilities.  From the matrices G=(gij) and G'=(g'ij), 

dimensionless integral output and input flow intensity matrices N=(nij) and N'=(n'ij) can be 

computed similar to Equation (A.1) from the convergent power series: 

 

N = G0 + G1 + G2 + G3 +... + Gm + ... = (I – G)–1, and   

N' = (G')0 + (G')1 + (G')2 + (G')3 +... + (G')m + ... = (I – G')–1, and (A.4) 

 

where G0 = I is again the identity matrix, and the m'th order terms, m = 1, 2, ..., account 

for interflows over all pathways in the system of lengths m.  The nondimensional output-oriented 

integral flow matrix can be redimensionalized by multiplying by the input vector, z, such that 

T=Nz and the nondimensional input-oriented integral flow matrix can be redimensionalized by 

pre-multiplying by the output vector, y, such that T=yN'.  The software returns G, G', N, and N' 

as well as several system-level summary flow parameters. 

A.3.3.3      UTILITY ANALYSIS 

Intercompartmental flow utilities are given by, dij = (fij–fji)/Ti.  The dimensionless dii 

quantities lie in the range –1 ≤ dii ≤ 1, and thus are not interpretable as probabilities.  They do, 
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however, conform to the requirements of a convergent series so long as the magnitude of the 

largest eigenvalue is less than one.  Therefore, a test must be executed before the flow utility 

power series is taken.  Networks found not to fulfill the convergence property are excluded from 

the utility analysis and flagged in the software output as –9999.  From the matrix D=(dij), a 

dimensionless integral utility intensity matrix U=(uij) can be computed: 

 

U = D0 + D1 + D2 + D3 +... + Dm + ... = (I – D)–1. (A.5) 

 

Note for completeness direct storage utilities could be derived from dsij = (fij–fji)/xi and integral 

storage utilities given by the following power series (convergence restrictions apply): 

 

US = DS0 + DS1 + DS2 + DS3 +... + DSm + ... = (I – DS)–1, (A.6) 

 

however, this parameter has not been thoroughly investigated or presented in the NEA literature.  

The nondimensional integral flow and storage utility matrices can be redimensionalized by 

multiplying by the diagonalized throughflow vector, Ť, such that Υ=UŤ and ΥS=USŤ.  The 

software returns D, DS, U, US, Y, and YS. 

A.3.3.4      CONTROL ANALYSIS 

Patten (1978b) introduced a Network Environ Analysis based measure of control or 

dominance (see also Patten and Auble (1981), Patten 1982, and Fath 2004).  The measure, 

expressed in a matrix CN = (cnij), is based on the ratio of integral flow from compartment j to i 

to the integral flow from i to j.  Compartment j is said to dominate i if its output environ effect on 

i is larger than i's input environ effect on j (cnij = nij/nji' >1).  This control relationship was further 
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modified such that when nij/nji' < 1, cnij = 1- nij/nji' otherwise cnij = 0.  The storage version of this 

measure is CQ, where cqij=qij/q'ji.  The storage–based dominance relationships are always 

identical to the throughflow-based measures because intensive throughflows and storages are 

related by the compartment turnover rates – which cancel out in the ratio measure.  NEA.m 

calculates both CN and CQ. 

A.4      NETWORK AND ENVIRON PROPERTIES 

In this section, we introduce the specific properties the software returns.  A listing and 

brief description of each of these is given in Table 1.  The formulas can be found in the code in 

Appendix A.B. 

A.4.1      UNIT ENVIRON ANALYSIS 

The first property is the quantitative environ, both in the input and output orientation.  

Since each compartment has two distinct environs there are 2n environs in total in an n-

compartment system.  The output environ Ek = (eijk) (i = 1, 2, …, n+1, j = 1, 2, …, n+1, k = 1, 2, 

…, n)  for the kth compartment is calculated by multiplying G times the diagonalized matrix of 

the kth column of N minus the diagonal of the kth column of N, such that eijk = gij*diag(nik)-

diag(nik) for i = 1, 2, …, n, j = 1, 2, …, n.  In MATLAB code: E(1:n,1:n,k) = G*diag(N(:,k))-

diag(N(:,k));  When constructed in the manner, elements on the principle diagonal of Ek are the 

negative throughflows of each compartment generated by the unit input.  The column sums of Ek 

(i = 1, 2, …, n, j = 1, 2, …, n ) give the negative output vector which is multiplied by −1 and 

incorporated into Ek as row n + 1, and row sums the negative input vector which is multiplied by 

−1 and incorporated into Ek as column n + 1.  When assembled, the result is the output oriented 

flow from each compartment to each other compartment in the system and across the system 
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boundary.  In a similar fashion, input environs are calculated by multiplying the diagonalized 

matrix of the kth column of N' by G' minus the diagonal of the kth column of N' (in code: 

EP(1:n,1:n,i)=diag(NP(k, :))*GP -diag(NP(k, :))).  Input (SE') and output (SE) oriented storage 

environs are calculated in analogous fashion using P, Q, P', and Q' (Matis and Patten 1981).   

These results comprise the foundation of Network Environ Analysis since they allow for the 

quantification of all within system interactions, both direct and indirect, on a compartment-by-

compartment basis.  In the software, E, E', SE, and SE' are returned as n+1×n+1×n arrays.  The 

n+1 row is the unit output vector and the n+1 column is the unit input vector for each n environs.   

A.4.2      INDIRECT TO DIRECT EFFECTS MEASURE 

This property is one of the most important since it compares the strength of indirect (non-

touching) flow in the compartment’s environ to the direct flow.  Indirect effects are calculated as 

the integral contributions minus the direct and initial boundary input.  The indirect to direct 

effects ratio is a measure of the relative strength of these two factors.  Mathematically, this is 

simply the following ratio for the output oriented throughflow case: 
∑∑

∑∑

= =

= =

−−
= n

i

n

j
ij

n

i

n

j
ijijij

g

gin
DI

1 1

1 1
)(

/ .  

When the ratio is greater than one, indirect flows are greater than direct flows.  This ratio can be 

calculated for the input and output oriented throughflow and storage analyses (respectively these 

are denoted as I/D(T,in), I/D(T,out), I/D(S,in), I/D(S,out)).  Analysis of many models has shown 

that these ratios are often greater than one, indicating the non-intuitive result that indirect effects 

have greater contribution than direct effects (Higashi and Patten 1989).  This is core evidence for 

the rationale behind systems modeling and systems perspective because it states that indirect 

effects are greater, therefore exerting greater dominance, than direct effects in a network.  This 

226



 

  

clearly has implications for understanding feedback and direct versus indirect control in 

networks. 

A.4.3      NETWORK HOMOGENIZATION 

The homogenization property yields a comparison of resource distribution between the 

direct and integral flow intensity matrices.  Due to the contribution of indirect pathways, flow in 

the integral matrix tends to be more evenly distributed than that in the direct matrix.  A statistical 

comparison of the distributions can be made by calculating the coefficient of variation of the 

direct and integral matrices (Fath and Patten 1999b).  For example, the coefficient of variation of 

the direct flow intensity matrix G is given by: 

 

( )

ij

n

1j

n

1i

2
ijij
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−

=

∑∑
= =

G  (A.7) 

where ijg  is the mean of the elements of G. 

Network homogenization occurs in the output oriented throughflow case when the 

coefficient of variation of N is less than the coefficient of variation of G because this indicates 

that the network flow is more evenly distributed in the integral matrix.  The test statistic 

employed here looks at whether or not the ratio CV(G)/CV(N) exceeds one.  In a similar fashion, 

this measure can be applied to the input throughflow and the input and output oriented storage 

cases.  These measures are denoted as Homog(T,in), Homog(T,out), Homog(S,in), 

Homog(S,out). 
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A.4.4      NETWORK AMPLIFICATION 

The amplification property deals explicitly with the values in the integral flow or storage 

matrices.  Diagonal elements of N (Q) are almost always great than one.  Off-diagonal elements, 

representing the integral flow from j to i, rarely are, but can exceed one when cycling drives 

more than the equivalent of one unit of input flow over the pathways linking those two 

compartments.  If any off-diagonal element of N (Q) is greater than one, then amplification is 

said to occur because a virtual input or output of one is implied by the nondimensional analysis.  

This measure can be applied to both the input and output orientations, and is notated as 

Amp(T,in), Amp(T,out), Amp(S,in), Amp(S,out). 

A.4.5      NETWORK SYNERGISM 

Synergism implies that positive utility exceeds negative utility in the system.  Utility is 

the throughflow or storage scaled value of net transactions between entity pairs.  To determine 

whether or not this occurs a comparison is made between positive and negative utilities of the 

dimensionalized integral utility matrix, Υ=UŤ, which quantifies the magnitude of the positive 

and negative utilities.  Synergism is said to occur when the magnitude of positive utility exceeds 

the magnitude of negative utility, which is the same as saying the ratio of the positive to negative 

utility exceeds one (Patten 1991, Fath and Patten 1998).  For completeness, we include the 

application of this measure to the storage case, though this parameter has not been thoroughly 

investigated nor previously presented in the literature.  These ratios are denoted as Synergism(T) 

and Synergism(S). 
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A.4.6      NETWORK MUTUALISM 

In addition to quantifying the direct and indirect relations the utility matrix can be used to 

determine qualitative relations between any two components in the network such as predation, 

mutualism, or competition.  Entries in the direct utility matrix, D, or integral utility matrix, U, 

can be positive or negative (−1≤ dij, uij ≤ 1).  The elements of D represent the direct relation 

between that (i,j) pairing and the elements of U the integral relations, respectively (Patten 1991, 

Fath and Patten 1998).  The direct matrix D, being zero-sum between complementary pairs dij 

and dji, always has the same number of positive and negative signs.  Signs in the integral matrix, 

U, are determined by the entire web of system interactions.  If there are more positive signs than 

negative signs in the integral utility matrix, then network mutualism is said to occur.  Network 

mutualism reveals the preponderance of positive mutualistic relations in the system.  Again for 

completeness, we include the application of this measure to the storage case, though it has not 

been thoroughly investigated nor previously presented in the NEA literature.  These ratios are 

denoted as Mutualism(T) and Mutualism(S). 

A.4.7      MODE PARTITIONING 

Flow (and flow derived storage) into and out of a specific compartment can be partitioned 

into five categories or modes: (0) boundary input, (1) first passage, (2) cycled, (3) dissipative, 

and (4) boundary output, depending on its position relative to the focal compartment.  Because 

this is a partition the modes are mutually exclusive and exhaustive (Fath et al. 2001).  Boundary 

input is flow that starts from the environment and crosses the system boundary into a 

compartment within the system.  It is calculated as Iz, where I is the identity matrix.  First 

passage flow, or mode 1, is flow from any compartment that reaches another (focal) 

compartment for the very first time.  Note, since this is compartment specific, flow cycled 
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between other compartments en route to the focal compartment for the first time is still 

considered first passage.  For example, first–passage flow to compartment k from i could have 

traveled the following path: i→j→i→j→k.  Cycled flow, or mode 2, is calculated using a 

derivation of the Finn (1976) cycling index and represents the amount of flow that has exited a 

compartment but will return again to that same compartment before being lost from the system 

such that the compartment in question is both the originating and terminating node for that 

pathway.  Dissipative, mode 3 flow has left the focal compartment never to return again, 

although it passes through other compartments before crossing the system boundary.  Boundary 

output, mode 4, is flow that exits the system boundary directly from the focal compartment in 

question.  Mode partitioning is described more fully by Higashi et al. (1993) and Fath et al. 

(2001).  

A.5      SOFTWARE 

NEA.m is a MATLAB® function created to rapidly perform NEA on flow-storage 

network models (available from 

http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do and in Appendix A.A).  The 

function implements algorithms for all analyses described in Sections 3 and 4.  It requires one 

input variable, 21 +×+Δ nn , that summarizes the flow and storage information for the system of 

interest.  The function returns a vector of the system-level environ properties ( 130ep × ) to the 

workspace (Table 1), displays the comprehensive list of analytical results in the command 

window, and saves all results as a MATLAB® data file called NEA_output.mat.   
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A.5.1      INPUT DATA 

The input argument 21 +×+Δ nn  is a (n+1)×(n+2) composite matrix that summarizes the 

system information of the flow–storage network to be analyzed, where n is the number of 

compartments or nodes of the network.  The composite input matrix is  

2n1nn1

1n1nnn

00y
xzF

+×+×

×××
⎥
⎦

⎤
⎢
⎣

⎡
=Δ , 

where nn×F  is the steady-state intercompartmental flow matrix, 1×nz  are the steady-state boundary 

inputs, ny ×1  are the steady-state boundary outputs, and 1nx ×  are storage values.  Δ  is oriented 

such that flows are from columns to rows. 

In its present form, Network Environ Analysis makes two critical assumptions about the 

input data.  First, flows and storages must be measured in a consistent conservative energy–

matter unit.  For example, all fluxes could have units of g C m–2 y–1 or mg P cm–3 d–1, while the 

corresponding storages would be g C m–2 or mg P cm–3.  Second, the data must represent a static, 

steady-state system (T(in) = T(out)).  When implemented, NEA.m first checks to ensure the system 

meets a steady-state requirement.  If the model does not meet this requirement, then a warning is 

given and the analysis does not proceed.  It would be necessary to first balance the network 

flows; algorithms for this are available (Savenkoff et al. 2001, Allesina and Bondavalli 2003).  

The static, steady-state assumption is a limitation of the methodology because few ecological 

systems exist in this condition.  Despite this limitation, important insights emerge that appear to 

challenge conventional ecological theory – such as energy cycling (Patten 1985) and the 

dominance of indirect effects (Higashi and Patten 1989, Patten in prep.).  Nonetheless, further 

work, like that initiated by Hippe (1983), to develop a dynamic Network Environ Analysis, is 

needed. 

231



 

  

The input variable can be coded as a MATLAB® function so that system data do not 

need to be reentered multiple times.  An example data function for an oyster reef model (Dame 

and Patten, 1981) is included with NEA.m.   

 

A.5.2      IMPLEMENTING NEA.M & DATA OUTPUT 

Once NEA.m is installed in the MATLAB® operating directory, the function can be 

implemented on Δ by typing “ep=NEA(Δ);” in the command window.  Resultant matrices 

from structural, throughflow, utility, unit environ analyses as well as a table of the system-level 

environ indices will be displayed in the command window.  The system-level indices are also 

returned to the workspace as the vector ‘ep’ (Table 1).  All results are stored in the MATLAB® 

data file ‘NEA_output.mat’.  This file can be loaded into the workspace, giving the user 

access to all resultant matrices for additional investigation and manipulation.  Typing 

“ep=NEA(Δ,0);” will prevent the results from displaying in the command window. 

While all results displayed in the command window can by cut and pasted into word 

processing or spreadsheet programs, there is a simple way to capture the results in an ASCII text 

file using the diary function in MATLAB®.  To use this function, type 

diary(‘file_name.txt’) in the command window, where ‘file_name’ is the name of the 

output file you are creating.  Then, run NEA.m by typing “NEA(Δ);” or “ep=NEA(Δ);”.  

When the computations are complete, type “diary off” to turn off the diary function.  This 

file can then be opened in any text editor.  Example NEA_output.mat and diary files for the 

Oyster Reef Model (Dame and Patten 1981) are included with the software and in Appendix 

A.B.   

232



 

  

A.6      CONCLUSION 

Network Environ Analysis is one branch of Ecological Network Analysis.  It is a 

powerful tool for investigating the within–system transactions and relations in ecological 

systems.  The software presented herein can be used to calculate the primary parameters and 

properties of Network Environ Analysis.  The analysis itself is not computationally challenging, 

but does require some familiarity with matrix algebra and graph theory concepts.  The software 

compiles the algorithms and should facilitate use of the methodology.  Network Environ 

Analysis is an active area of research such that not all of its facets could be included here.  Also, 

while the software provides the quantitative results, the challenging task of interpretation is left 

to the user.  Previous applications of Network Environ Analysis (Matis and Patten 1981, Patten 

and Matis 1982, Flebbe 1983, Patten 1983, in prep.) may be useful guides for interpretation.   It 

is our intention that dissemination of this software will encourage others to look more closely at 

the environ methods and be aided in applying them in their own research. 
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APPENDIX A.A: A FUNCTION FOR NETWORK ENVIRON ANALYSIS EXPRESSED IN 
MATLAB NOTATION 

 
function [ep]=NEA(data,varargin); 
% y=NEA(data) performs network environ analysis on model "data". 
% 
% y=NEA(data,0) performs network environ analysis on model "data", but 
% does not show the results in the workspace (they are still saved as 
% 'NEA_ouput.mat') 
%  
% VERSION REV 1.0.0 
% Brian D. Fath & Stuart R. Borrett 2004 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
% I. INTRODUCTION 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
% This program is a compilation of algorithms for network environ 
% analysis.  This is a self-contained program; all functions required are  
% included in this file. 
% 
% REQUIRED DATA INPUT 
% The input variable 'data' is an (n+1 x n+2) matrix composed of an nxn  
% flow matrix (F), an nx1 input vector (z), an nx1 storage vector (x),  
% a 1xn output vector (y), and a 1x2 vector of zeros.  Data should reflect  
% a system at steady-state (though some analyses remain valid  
% for non-steadystate (i.e., structural analysis)). 
% 
% DATA OUTPUT 
% 'ep' is a vector of environ properties and network statistics.  To  
% return additional variables to the Matlab workspace, place the variable  
% name into the output definition.  For example, [A,G,ep]=NEA(data) will 
% return A, G and ep to the workspace. All variables are stored in  
% NEA_output.mat. 
% 
% PROGRAM OUTLINE 
% I.Introduction 
% II.Initialize Parameters 
% III.Main Program 
%       a.  Verify Steady-State Assumption 
%       b.Network Environ Analysis 
%           i.Structural Analysis 
%           ii.Throughflow Analysis 
%           iii. Storage Analysis 
%           iv.Utility Analysis 
%           v.Unit Environs 
%           vi.Control Analysis 
%       c.Summary of Environ Properties and Network Statistics 
% IV.Subfunctions 
%       a.NEA_structure 
%       b.NEA_throughflow 
%       c.NEA_storage 
%       d.NEA_utility 
%       e.NEA_u_environs 
%       f.  NEA_control 
% V.Auxiliary Programs 
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%       a. Unpack 
%       b. Environ Error Tolerance 
%       c. Bcratio 
%       d.  Mode 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
tic     % Starts program timer 
 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
% II.  Initialize Parameters -=-=-=-==-=-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-= 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
 
% control variable number of inputs (sets disp_ctrl to default) 
if length(varargin)==0, disp_ctrl=1; 
elseif length(varargin)==1, disp_ctrl=varargin{1};  
end 
 
global n I 
[F, y, z, x]=unpack(data);  % Unpacks the data matrix into component parts 
n=length(F); % length of F gives the dimensions of the flow matrix 
T=sum(F')'+z; % total throughflow at each compartment including input 
FD=F-diag(T); % flow matrix with negative throughflows on diagonal 
I=eye(n); % nxn identity matrix 
 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
% III.  Main Program  =-=-=-=-=-==-=-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-=-= 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
 
% Check Steady-State Assumption 
Tin=sum(F')+z';     % inputs 
Tout=sum(F)+y;      % outputs 
pd=abs((Tin-Tout))./Tin; % proportional difference in node throughflow 
pd_count=length(find(pd>=0.0005));  % find number of proportional throughflow  
                                    % differences that are greater than 
                                    % 0.0005 or 0.05%. 
if pd_count==0 
    disp('Steady-state assumption met') 
else 
    disp('Proportoinal Difference between Tin and Tout = '), pd 
    error('Model does not meet steady-state requirement');     
    return          % terminates program 
end 
 
% Network Environ Analysis 
% ---------------------------------------- 
% Structural Analysis (SUBFUNCTION_1) 
[A,A1,structure_ep]=NEA_structure(F); 
% Throughflow Analysis (SUBFUNCTION_2) 
[G,GP,N,NP,flow_ep]=NEA_throughflow(F,y,z,T,FD); 
% Storage Analysis (SUBFUNCTION_3) 
[C,CP,S,SP,P,Q,PP,QP,dt,stor_ep]=NEA_storage(F,T,x,FD); 
% Utility Analysis (SUBFUNCTION_4) 
[D,DS,U,Y,US,YS,utility_ep]=NEA_utility(FD,T,x); 
% Unit Environ Analysis (SUBFUNCTION_5) 
[E,EP,SE,SEP,environ_error_tol]=NEA_u_environs(G,N,GP,NP,P,Q,PP,QP); 
% Control Analysis (SUBFUNCTION_6) 
[CN,CQ]=NEA_control(N,NP,Q,QP); 
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% Summary of Network and Environ Properties 
ep=[structure_ep,flow_ep,stor_ep,utility_ep]';  
ep_labels1={'# nodes, n','# links, L','connectance, L/n^2', ... 
    'link density, L/n','path proliferation',...  
    'TST','Cycling Index (T)',... 
    'MODE_0 boundary','MODE_1, 1st pass',... 
    'MODE_2, cycled','MODE_3, dissipative','MODE_4, boundary'... 
    'Amp (T,output)','Amp (T,input)',... 
    'I/D (T,output)','I/D (T,input)','Homog (T,output)',... 
    'Homog (T,input)', 'Aggradation',...  
    'Cycling Index (S)','Amp (S,output)',... 
    'Amp (S,input)','I/D (S,output)','I/D (S,input)',... 
    'Homog (S,output)','Homog (S,input)',...  
    'Synergism (T)','Mutualism (T)',... 
    'Synergism (S)','Mutualism (S)'}';   % ep labels 
 
% Table of Environ Properties 
indx=1:length(ep_labels1); eee=num2cell(indx)'; ep_labels=[eee ep_labels1];        
eeee=num2cell(ep); ep_table=[eee ep_labels1 eeee];  
 
contents={'F' 'z' 'y' 'x' 'T' 'A' 'A1' 'G',... 
        'GP' 'N' 'NP' 'CN' 'C' 'P' 'Q' 'S' 'CP' 'PP' 'QP' 'SP' 'CQ',... 
        'D' 'DS' 'U' 'Y' 'US' 'YS' 'E' 'EP' 'SE' 'SEP',... 
        'ep' 'ep_table' 'contents'}; 
 
save NEA_output F z y x T A A1 G GP N NP CN C CP S SP P Q dt PP QP CQ D DS U Y US YS E EP SE SEP ep 
ep_table contents 
 
% ------------------------------------------------------------------------- 
%                         DISPLAY CONTROL 
% ------------------------------------------------------------------------- 
% This section allows you to turn on and off the display of various results 
% in the workspace. 
 
switch disp_ctrl 
    case 1          % insert the parameter you want to see into this list 
        disp('Original System Data') 
        F,z,y,x 
        disp('Structural Analysis') 
        A,A1 
        disp('Throughflow Analysis') 
        T,G,GP,N,NP 
        disp('Storage Analysis') 
        C,CP,S,SP,P,Q,dt,PP,QP 
        disp('Control Analysis') 
        disp('Throughflow'),CN 
        disp('Storage'),CQ 
        disp('Utility Analysis') 
        D,DS,U,Y,US,YS 
        disp('Unit Environs') 
        disp('numerical error tolerance'),environ_error_tol 
        disp('Unit output flow environs'),E 
        disp('Unit input flow environs'),EP 
        disp('Unit output storage environs'),SE 
        disp('Unit input storage environs'),SEP 

239



 

  

        disp('Environ Properties') 
        ep_table 
    case 0 
end 
prog_time=toc               % time elapsed during program 
 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
% IV.   SUBFUNCTIONS  =-=-=-=-=-==-=-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-=-= 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
 
% ------------------------------------------------------------------------- 
% SUBFUNCTION_1: Structural Analysis (PRIMARY) 
% ------------------------------------------------------------------------- 
 
function [A,A1,structure_ep]=NEA_structure(F) 
% y=netstructure(data,struct_plots)   
% This subfunction calculates several statistics that describe the network 
% structure of the system. 
% ******************************************************************* 
global n I 
A=sign(F);             % nxn adjacency matrix 
A1=A+I;       % nxn adjacency walk matrix 
L=nnz(A);              % number of links or arcs in the network 
C=L/(n^2);             % network connectance 
Ln=L/n;                % link density 
max_eig=max(abs(eig(A))); % dominant eigenvalue of A = rate of  
       % pathway proliferation.  This can serve as a complexity index 
structure_ep=[n,L,C,Ln,max_eig];   % return variable 
 
% ------------------------------------------------------------------------- 
% SUBFUNCTION_2: Throughflow Analysis 
% ------------------------------------------------------------------------- 
function [G,GP,N,NP,flow_ep]=NEA_throughflow(F,y,z,T,FD); 
% [G,GP,N,NP,flow_ep]=NEA_throughflow(F,y,z,T,FD)   
% This subfunction perfoms the input and output oriented throughflow 
% normalized environ analysis 
% ******************************************************************* 
global n I 
% Direct throughflow  
G=I+FD*inv(diag(T));    % fij/Tj for i,j=1:n -- output matrix 
GP=I+inv(diag(T))*FD;% fij/Ti for i,j=1:n -- input matrix 
% Integral throughflow  
N=inv(I-G);    % integral output flow matrix -- I+G+G^2+G^3+... 
NP=inv(I-GP); % integral input flow matrix -- I+GP+GP^2+GP^3+... 
dN=diag(N); 
 
[MODE_0,MODE_1,MODE_2,MODE_3,MODE_4]=mode(N,z); % mode analysis 
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% Throughflow environ properties 
% ******************************************************************** 
p=ones(n,1);      % ones vector 
TSTc=sum(((dN-p)./dN).*T); % cycled (mode 2) throughflow 
TST=sum(T);  % total system throughflow 
CIF=TSTc/TST;      % cycling index (modified from Finn 1976) 
Z=sum(z);                    % total input 
 
% Amplification parameter 
NAF=length(find((N-diag(dN))>1));            % output  
NAFP=length(find((NP-diag(diag(NP)))>1));    % input  
 
% Indirect effects parameter 
IDF=sum(sum(N-I-G))/sum(G(:));     % indirect to direct ratio (output) 
IDFP=sum(sum(NP-I-GP))/sum(GP(:));   % indirect to direct ratio (input) 
 
% Homogenization parameter 
CVG=std(G(:))/mean(G(:)); % coefficient of variation for G 
CVN=std(N(:))/mean(N(:)); % coefficient of variation for N 
HF=[CVG/CVN]; % homogenization parameter (output) 
 
CVGP=std(GP(:))/mean(GP(:)); % coefficient of variation for G 
CVNP=std(NP(:))/mean(NP(:)); % coefficient of variation for N 
HFP=[CVG/CVN]; % homogenization parameter (input) 
 
% Network Aggradation or Average Path Length 
AGG=TST/Z;      % Jorgensen, Patten and Straskraba (2000) 
                 % Original formulation of average path length (Finn 1976) 
                 % This parameter is expected to increase as systems develop. 
 
flow_ep=[TST,CIF, MODE_0,MODE_1,MODE_2,MODE_3,MODE_4,... 
        NAF,NAFP,IDF,IDFP,HF,HFP,AGG]; 
 
% ------------------------------------------------------------------------- 
% SUBFUNCTION_3: Storage Analysis 
% ------------------------------------------------------------------------- 
function [C,CP,S,SP,P,Q,PP,QP,dt,stor_ep]=NEA_storage(F,T,x,FD) % Storage Analysis 
% [P,Q,PP,QP,dt,stor_ep]=NEA_storage(F,T,x,FD)   
% This subfunction perfoms the input and output oriented storage 
% normalized environ analysis 
% ******************************************************************* 
global I n 
% Direct storage matrices 
C=FD*inv(diag(x));          % fij/xj for i,j=1:n -- output matrix 
CP=inv(diag(x))*FD;        % fij/xi for i,j=1:n -- input matrix 
dt=-1/floor(min(diag(C))); % smallest whole number to make diag(C) nonnegative 
P=I+C*dt;                    % non-dimensional direct output storage matrix 
PP=I+CP*dt;                 % non-dimensional direct input storage matrix 
% Integral storage matrices 
S=-inv(C);  % dimensionalized integral output community matrix 
SP=-inv(CP);      % dimensionalized integral input community matrix 
Q=inv(I-P);  % integral output storage matrix -- I+P+P^2+P^3+... 
QP=inv(I-PP);      % integral input storage matrix -- I+PP+PP^2+PP^3+... 
dQ=diag(Q);  % diag of integral output storage matrix (=diag(QP)) 
 
% Storage environ properties 
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% ******************************************************************** 
p=ones(n,1);  % ones vector 
TSTcs=sum(((dQ-p)./dQ).*T); % cycled (mode 2) throughflow 
TSTs=sum(T);  % total system throughflow 
CIS=TSTcs/TSTs; % cycling index (storage) 
 
% Amplification parameter 
NAS=length(find((Q-diag(diag(Q)))>1));      
NASP=length(find((QP-diag(diag(QP)))>1)); 
 
% Indirect effects parameter 
IDS=sum(sum(Q-I-P))/sum(P(:)); % indirect to direct ratio (output matrix) 
IDSP=sum(sum(QP-I-PP))/sum(PP(:));   % indirect to direct ratio (input matrix) 
 
% Homogenization parameter 
CVP=std(P(:))/mean(P(:)); % Coefficient of variation for G 
CVQ=std(Q(:))/mean(Q(:));    % Coefficient of variation for N 
HS=[CVP/CVQ];  % homogenization parameter (output storage) 
 
CVPP=std(PP(:))/mean(PP(:)); % Coefficient of variation for GP 
CVQP=std(QP(:))/mean(QP(:)); % Coefficient of variation for NP 
HSP=[CVPP/CVQP]; % homogenization parameter (input storage) 
stor_ep=[CIS,NAS,NASP,IDS,IDSP,HS,HSP]; 
 
% ------------------------------------------------------------------------- 
% SUBFUNCTION_4: Utility Analysis 
% ------------------------------------------------------------------------- 
function [D,DS,U,Y,US,YS,utility_ep]=NEA_utility(FD,T,x) 
% ******************************************************************* 
global I n 
% Direct Utility, Throughflow --------------------------------------- 
D=inv(diag(T))*(FD-FD'); % (fij-fji)/Ti for i,j=1:n, (GP-G') -- utility matrix 
e=eig(D);  % convergence test 
if abs(max(e))>=1            % check for convergence 
    disp('WARNING: Throughflow Utility matrix does not converge'); 
    U=-9999;                %  flag if no convergence 
    Y=-9999;                %  flag if no convergence 
    NSF=-9999; PNF=-9999;  %  flag if no convergence 
else 
    % Integral Utility, Throughflow 
 U=inv(I-D); % Nondimensional integral flow utility 
 Y=diag(T)*U; % Dimensional integral flow utility 
     
    % Throughflow Utility Indices     
    NSF=bcratio(Y); % flow benefit cost ratio (calls other function) (Synergism) 
 B=[1 1;1 -1]; % coefficient matrix 
 Z=[n^2;sum(sum(sign(U)))];  % vector with total n and addition of all entries 
 X=B\Z; % solve for number of positive and negative signs 
 PNF=X(1,1)/X(2,1); % ratio of positive to negative signs (mutualism) 
end      
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% Direct Utility, Storage -------------------------------------------- 
DS=inv(diag(x))*(FD-FD'); % (fij-fji)/xi for i,j=1:n, (CP-C') -- utility matrix 
e=eig(DS); 
if abs(max(e))>=1        % check for convergence 
    disp('WARNING: Storage Utility matrix does not converge'); 
    % Integral Utility, Storage 
 US=-9999;     % flag if no convergence 
 YS=-9999;     % flag if no convergence 
    NSS=-9999; PNS=-9999;% flag if no convergence 
else 
    % Integral Utility, Storage 
 US=inv(I-DS); % Nondimensional integral storage utility 
 YS=diag(T)*US; % Dimensional integral storage utility 
     
    % Storage Utility Indices 
    NSS=bcratio(YS);  % storage benefit cost ratio (calls other function) 
    B=[1 1;1 -1];  % coefficient matrix 
 Z=[n^2;sum(sum(sign(US)))]; % vector with total n and addition of all entries 
 X=B\Z; % solve for number of positive and negative signs 
 PNS=X(1,1)/X(2,1); % storage ratio of positive to negative signs 
end      
 
utility_ep=[NSF,PNF,NSS,PNS]; 
 
% ------------------------------------------------------------------------- 
% SUBFUNCTION_5: Unit Environs 
% ------------------------------------------------------------------------- 
function [E,EP,SE,SEP,environ_error_tol]=NEA_u_environs(G,N,GP,NP,P,Q,PP,QP) 
% This subfunction calculates the unit environs (input, output, 
% throughflow, and storage) for the given system.  Noticeable numerical 
% error is usually apparent in the resultant matricies. Here, I use the 
% subfunction "environ_error" removes an arbitrary amount of error by 
% setting values less than "environ_error_tol" to 0.  A more appropriate way 
% might be to round the values to a particular decimal place. 
 
% IMPORTANT:  Check the error tolerance level to make sure it is 
% appropriate 
% ************************************************************************* 
 
global I n 
E=zeros(n+1,n+1,n); EP=zeros(n+1,n+1,n);  
SE=zeros(n+1,n+1,n); SEP=zeros(n+1,n+1,n); 
     % these statements dimensionalize E, EP, SE, and SEP as 3-D 
     % variables. 
         
environ_error_tol=1e-10;  
% The value of this is arbitrary. Other ways to set this variable are possible. 
 
% Throughflow unit environs ---------------- 
for i=1:n 
 E(1:n,1:n,i)=G*diag(N(:,i)); 
 E(1:n,1:n,i)=E(1:n,1:n,i)-diag(N(:,i)); 
 E(n+1,1:n,i)=sum(-E(1:n,1:n,i)); 
    E(1:n,n+1,i)=sum(-E(1:n,1:n,i)')'; % unit output flow environs 
    E=environ_error(E,environ_error_tol); % AUX1 
end 
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for i=1:n 
 EP(1:n,1:n,i)=diag(NP(i,:))*GP; 
 EP(1:n,1:n,i)=EP(1:n,1:n,i)-diag(NP(i,:)); 
 EP(1:n,n+1,i)=sum(-EP(1:n,1:n,i)')'; 
    EP(n+1,1:n,i)=sum(-EP(1:n,1:n,i)); % unit input flow environs 
    EP=environ_error(EP,environ_error_tol); % AUX1 
end 
 
% Storage unit environs -------------------- 
for i=1:n 
 SE(1:n,1:n,i)=P*diag(Q(:,i)); 
 SE(1:n,1:n,i)=SE(1:n,1:n,i)-diag(Q(:,i)); 
 SE(n+1,1:n,i)=sum(-SE(1:n,1:n,i)); 
    SE(1:n,n+1,i)=sum(-SE(1:n,1:n,i)')'; % unit output storage environs 
    SE=environ_error(SE,environ_error_tol); % AUX1 
end 
for i=1:n 
 SEP(1:n,1:n,i)=diag(QP(i,:))*PP; 
 SEP(1:n,1:n,i)=SEP(1:n,1:n,i)-diag(QP(i,:)); 
 SEP(1:n,n+1,i)=sum(-SEP(1:n,1:n,i)')'; 
 SEP(n+1,1:n,i)=sum(-SEP(1:n,1:n,i)); % unit input storage environs 
    SEP=environ_error(SEP,environ_error_tol); % AUX1 
end 
 
% ------------------------------------------------ 
% SUBFUNCTION_6: Control Analysis 
% ------------------------------------------------ 
function [CN,CQ,CN_diff, CQ_diff]=NEA_control(N,NP,Q,QP) 
% This subfunciton calculates the ratio control or dominance matrix.  
%************************************* 
global I n 
warning off MATLAB:divideByZero %temporarily turn off divide by 0 warning 
% Throughflow 
CN_temp=N./NP';  
j=find(CN_temp<1 & CN_temp>=0);  
CN=zeros(n); 
CN(j)=1-CN_temp(j); 
 
% Storage 
CQ_temp=Q./QP';  
i=find(CQ_temp<1 & CQ_temp>=0);  
CQ=zeros(n); 
CQ(j)=1-CQ_temp(j); 
 
warning on MATLAB:divideByZero %turn on divide by 0 warning 
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% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
% =-=-=-=-=-=-=              AUXILIARY PROGRAMS           =-=-=-=-=-=-=-=-= 
% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
 
% ------------------------------------------------------------------------- 
% AUX1: Unpack (AUXILIARY PROGRAM) 
% ------------------------------------------------------------------------- 
function [F, y, z, x]=unpack(DATA) 
% function [F, y, z, x]=unpack2(DATA), where data= n+1 x n+2 matrix when  
% n=number of network nodes function that unpacks data from a condensed  
% format.  data matrix contains F,z,x,y 
% data unpack 
% Stuart R. Borrett | 2002 
% ************************* 
 
n=length(DATA)-2; 
F=DATA(1:n,1:n); 
y=DATA(n+1,1:n); 
z=DATA(1:n,n+1); 
x=DATA(1:n,n+2); 
 
% ------------------------------------------------------------------------- 
% AUX2: Environ Error (AUXILIARY PROGRAM) 
% ------------------------------------------------------------------------- 
function ret=environ_error(E,tolerance) 
% ret=environ_error2(E), where E is a 3-D environ matrix 
% This program removes some numerical error by replacing very small values  
% (under the error tolerance) with a 0.  The suggested error level is 1e-10,  
% although there is no formal reason for choosing this level.  Further  
% analysis is needed to determine the most appropriate level. 
% *************************************************** 
 
et=tolerance;           % error tolerance level 
[m,n,o]=size(E); 
L=m*n*o; 
for i=1:L 
    if E(i)>0&E(i)<et 
        E(i)=0; 
    end 
    if E(i)<0&E(i)>(-1*et) 
        E(i)=0; 
    end  
end 
ret=E; 
    
% ------------------------------------------------------------------------- 
% AUX3: Bcratio (AUXILIARY PROGRAM) 
% ------------------------------------------------------------------------- 
function r=bcratio(Y); 
%  This calculates the ratio of sum of positive to sum of 
%  negative interactions in the system.   
%  The B matrix sets up a pair of linear equations where 
%  pos+neg=sum(sum(abs(Y))) and pos-neg=sum(sum(Y)) 
%  This set of equations is solved, X, and a ratio is taken. 
%  The next line zeros out the diagonal elements 
%  Y=Y-diag(diag(Y)); 
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% ********************************************************** 
 
plus=sum(sum(abs(Y))); 
minus=sum(sum(Y)); 
B=[1 1;1 -1]; 
Z=[plus;minus]; 
X=B\Z; 
r=X(1,1)/X(2,1);  
 
% ------------------------------------------------------------------------- 
% AUX4: MODE (AUXILIARY PROGRAM) 
% ------------------------------------------------------------------------- 
function [T0,T1,T2,T3,T4]=mode(N,z); 
% This function partitions flow into five different modes.  Mode 0 is 
% the boundary input -- flow that reaches a compartment from across the  
% system boundary.  Mode 1 is internal first passage flow -- total internal 
% flow from compartment j to compartment i for the first time along all 
% available pathways (including cycles that do not touch i).  Mode 2 is 
% cycled flow -- total contribution that returns to a compartment after its 
% initial visit.  Modes 3 and 4 are dissipative equivalents to Modes 1  
% and 0, respectively. 
% ***************************************************** 
global I n 
mode0=diag(I*z); 
mode1=inv(diag(diag(N)))*N*diag(z)-diag(I*z); 
mode2=(diag(diag(N))-I)*inv(diag(diag(N)))*N*diag(z); 
TSC = sum((diag(diag(N))-I)*inv(diag(diag(N)))*N*diag(z)); 
T0=sum(sum(mode0)); 
T1=sum(sum(mode1)); 
T2=sum(sum(mode2)); 
T3=T1; 
T4=T0; 
T=T0+T1+T2; 
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APPENDIX A.B: RESULTS FROM NEA.M ANALYSIS OF OYSTER REEF MODEL 
 
Steady-state assumption met. 
 

ORIGINAL SYSTEM DATA 
F = 
         0         0         0         0         0         0 
   15.7915         0         0    4.2403    1.9076    0.3262 
         0    8.1721         0         0         0         0 
         0    7.2745    1.2060         0         0         0 
         0    0.6431    1.2060    0.6609         0         0 
    0.5135         0         0         0    0.1721         0 
z = 
   41.4697 
         0 
         0 
         0 
         0 
         0 
y = 
   25.1646    6.1759    5.7600    3.5794    0.4303    0.3594 
x = 
  1.0e+003 * 
    2.0000 
    1.0000 
    0.0024 
    0.0241 
    0.0163 
    0.0692 
 

STRUCTURAL ANALYSIS 
A = 
     0     0     0     0     0     0 
     1     0     0     1     1     1 
     0     1     0     0     0     0 
     0     1     1     0     0     0 
     0     1     1     1     0     0 
     1     0     0     0     1     0 
A1 = 
     1     0     0     0     0     0 
     1     1     0     1     1     1 
     0     1     1     0     0     0 
     0     1     1     1     0     0 
     0     1     1     1     1     0 
     1     0     0     0     1     1 
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THROUGHFLOW ANALYSIS 
T = 
   41.4697 
   22.2656 
    8.1721 
    8.4805 
    2.5100 
    0.6856 
G = 
         0         0         0         0         0         0 
    0.3808         0         0    0.5000    0.7600    0.4758 
         0    0.3670         0         0         0         0 
         0    0.3267    0.1476         0         0         0 
         0    0.0289    0.1476    0.0779         0         0 
    0.0124         0         0         0    0.0686         0 
GP = 
         0         0         0         0         0         0 
    0.7092         0         0    0.1904    0.0857    0.0147 
         0    1.0000         0         0         0         0 
         0    0.8578    0.1422         0         0         0 
         0    0.2562    0.4805    0.2633         0         0 
    0.7490         0         0         0    0.2510         0 
N = 
    1.0000         0         0         0         0         0 
    0.5369    1.3885    0.2775    0.7800    1.1006    0.6606 
    0.1971    0.5096    1.1019    0.2863    0.4039    0.2425 
    0.2045    0.5288    0.2533    1.2971    0.4192    0.2516 
    0.0605    0.1565    0.1904    0.1659    1.1241    0.0745 
    0.0165    0.0107    0.0131    0.0114    0.0771    1.0051 
NP = 
    1.0000         0         0         0         0         0 
    1.0000    1.3885    0.1019    0.2971    0.1241    0.0203 
    1.0000    1.3885    1.1019    0.2971    0.1241    0.0203 
    1.0000    1.3885    0.2441    1.2971    0.1241    0.0203 
    1.0000    1.3885    0.6198    0.5604    1.1241    0.0203 
    1.0000    0.3485    0.1556    0.1407    0.2822    1.0051 
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STORAGE ANALYSIS 
C = 
   -0.0207         0         0         0         0         0 
    0.0079   -0.0223         0    0.1758    0.1172    0.0047 
         0    0.0082   -3.3880         0         0         0 
         0    0.0073    0.5000   -0.3516         0         0 
         0    0.0006    0.5000    0.0274   -0.1542         0 
    0.0003         0         0         0    0.0106   -0.0099 
CP = 
   -0.0207         0         0         0         0         0 
    0.0158   -0.0223         0    0.0042    0.0019    0.0003 
         0    3.3880   -3.3880         0         0         0 
         0    0.3016    0.0500   -0.3516         0         0 
         0    0.0395    0.0741    0.0406   -0.1542         0 
    0.0074         0         0         0    0.0025   -0.0099 
S = 
   48.2280         0         0         0         0         0 
   24.1140   62.3604   12.4643   35.0326   49.4283   29.6703 
    0.0582    0.1504    0.3252    0.0845    0.1192    0.0716 
    0.5817    1.5042    0.7204    3.6893    1.1923    0.7157 
    0.3924    1.0149    1.2342    1.0754    7.2881    0.4829 
    1.6696    1.0838    1.3181    1.1485    7.7833  101.5031 
SP = 
   48.2280         0         0         0         0         0 
   48.2280   62.3604    0.0301    0.8450    0.8044    2.0543 
   48.2280   62.3604    0.3252    0.8450    0.8044    2.0543 
   48.2280   62.3604    0.0720    3.6893    0.8044    2.0543 
   48.2280   62.3604    0.1829    1.5939    7.2881    2.0543 
   48.2280   15.6538    0.0459    0.4001    1.8295  101.5031 
P = 
    0.9948         0         0         0         0         0 
    0.0020    0.9944         0    0.0439    0.0293    0.0012 
         0    0.0020    0.1530         0         0         0 
         0    0.0018    0.1250    0.9121         0         0 
         0    0.0002    0.1250    0.0068    0.9614         0 
    0.0001         0         0         0    0.0026    0.9975 
Q = 
  192.9119         0         0         0         0         0 
   96.4560  249.4416   49.8573  140.1304  197.7131  118.6812 
    0.2327    0.6017    1.3009    0.3380    0.4769    0.2863 
    2.3266    6.0168    2.8816   14.7572    4.7690    2.8627 
    1.5697    4.0594    4.9370    4.3016   29.1522    1.9314 
    6.6783    4.3353    5.2725    4.5939   31.1334  406.0125 
dt = 
    0.2500 
PP = 
    0.9948         0         0         0         0         0 
    0.0039    0.9944         0    0.0011    0.0005    0.0001 
         0    0.8470    0.1530         0         0         0 
         0    0.0754    0.0125    0.9121         0         0 
         0    0.0099    0.0185    0.0102    0.9614         0 
    0.0019         0         0         0    0.0006    0.9975 
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QP = 
  192.9119         0         0         0         0         0 
  192.9119  249.4416    0.1203    3.3801    3.2176    8.2171 
  192.9119  249.4416    1.3009    3.3801    3.2176    8.2171 
  192.9119  249.4416    0.2882   14.7572    3.2176    8.2171 
  192.9119  249.4416    0.7317    6.3758   29.1522    8.2171 
  192.9119   62.6151    0.1837    1.6005    7.3178  406.0125 
 

CONTROL ANALYSIS     
THROUGHFLOW 
CN = 

         0    1.0000    1.0000    1.0000    1.0000    1.0000 
         0    0.0000    0.8001    0.4382    0.2074         0 
         0         0         0         0    0.3483         0 
         0         0    0.1475         0    0.2520         0 
         0         0         0         0         0    0.7361 
         0    0.4724    0.3584    0.4409         0         0 

STORAGE 
CQ = 
         0    1.0000    1.0000    1.0000    1.0000    1.0000 
         0   -0.0000    0.8001    0.4382    0.2074         0 
         0         0         0         0    0.3483         0 
         0         0    0.1475         0    0.2520         0 
         0         0         0         0         0    0.7361 
         0    0.4724    0.3584    0.4409         0         0 
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UTILITY ANALYSIS 
D = 
         0   -0.3808         0         0         0   -0.0124 
    0.7092         0   -0.3670   -0.1363    0.0568    0.0147 
         0    1.0000         0   -0.1476   -0.1476         0 
         0    0.3578    0.1422         0   -0.0779         0 
         0   -0.5038    0.4805    0.2633         0   -0.0686 
    0.7490   -0.4758         0         0    0.2510         0 
DS = 
         0   -0.0079         0         0         0   -0.0003 
    0.0158         0   -0.0082   -0.0030    0.0013    0.0003 
         0    3.3880         0   -0.5000   -0.5000         0 
         0    0.1258    0.0500         0   -0.0274         0 
         0   -0.0777    0.0741    0.0406         0   -0.0106 
    0.0074   -0.0047         0         0    0.0025         0 
U = 
    0.8332   -0.2228    0.0706    0.0128   -0.0270   -0.0117 
    0.4244    0.5994   -0.1938   -0.0359    0.0652   -0.0009 
    0.3936    0.5472    0.7414   -0.2000   -0.0609    0.0073 
    0.2077    0.2871    0.0021    0.9457   -0.0563    0.0055 
    0.0010    0.0664    0.4369    0.1663    0.9109   -0.0615 
    0.4224   -0.4354    0.2548    0.0684    0.1774    0.9762 
Y = 
   34.5510   -9.2415    2.9291    0.5320   -1.1207   -0.4864 
    9.4493   13.3455   -4.3144   -0.7997    1.4517   -0.0210 
    3.2164    4.4718    6.0592   -1.6347   -0.4978    0.0598 
    1.7617    2.4347    0.0175    8.0204   -0.4777    0.0466 
    0.0026    0.1667    1.0967    0.4174    2.2863   -0.1544 
    0.2896   -0.2985    0.1747    0.0469    0.1216    0.6693 
US = 

 
    0.9999   -0.0077    0.0001   -0.0000   -0.0000   -0.0003 
    0.0154    0.9741   -0.0075    0.0010    0.0050    0.0003 
    0.0487    3.0821    0.9178   -0.4862   -0.4416    0.0057 
    0.0043    0.2721    0.0430    0.9757   -0.0479    0.0006 
    0.0025    0.1638    0.0703    0.0035    0.9649   -0.0102 
    0.0073   -0.0042    0.0002    0.0000    0.0024    1.0000 
YS = 
   41.4646   -0.3189    0.0025   -0.0003   -0.0017   -0.0107 
    0.3425   21.6883   -0.1679    0.0226    0.1108    0.0058 
    0.3981   25.1876    7.5002   -3.9729   -3.6091    0.0463 
    0.0365    2.3079    0.3648    8.2746   -0.4062    0.0050 
    0.0063    0.4112    0.1766    0.0088    2.4219   -0.0255 
    0.0050   -0.0029    0.0001    0.0000    0.0016    0.6856 
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UNIT ENVIRONS    
            numerical error tolerance 

environ_error_tol = 
  1.0000e-010 
 

UNIT OUTPUT FLOW ENVIRONS 
E(:,:,1) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.3808   -0.5369         0    0.1023    0.0460    0.0079         0 
         0    0.1971   -0.1971         0         0         0         0 
         0    0.1754    0.0291   -0.2045         0         0         0 
         0    0.0155    0.0291    0.0159   -0.0605         0         0 
    0.0124         0         0         0    0.0042   -0.0165         0 
    0.6068    0.1489    0.1389    0.0863    0.0104    0.0087         0 
E(:,:,2) = 
         0         0         0         0         0         0         0 
         0   -1.3885         0    0.2644    0.1190    0.0051    1.0000 
         0    0.5096   -0.5096         0         0         0         0 
         0    0.4536    0.0752   -0.5288         0         0         0 
         0    0.0401    0.0752    0.0412   -0.1565         0         0 
         0         0         0         0    0.0107   -0.0107         0 
         0    0.3851    0.3592    0.2232    0.0268    0.0056         0 
E(:,:,3) = 
         0         0         0         0         0         0         0 
         0   -0.2775         0    0.1266    0.1447    0.0062         0 
         0    0.1019   -1.1019         0         0         0    1.0000 
         0    0.0907    0.1626   -0.2533         0         0         0 
         0    0.0080    0.1626    0.0197   -0.1904         0         0 
         0         0         0         0    0.0131   -0.0131         0 
         0    0.0770    0.7766    0.1069    0.0326    0.0068         0 
E(:,:,4) = 
         0         0         0         0         0         0         0 
         0   -0.7800         0    0.6486    0.1261    0.0054         0 
         0    0.2863   -0.2863         0         0         0         0 
         0    0.2548    0.0422   -1.2971         0         0    1.0000 
         0    0.0225    0.0422    0.1011   -0.1659         0         0 
         0         0         0         0    0.0114   -0.0114         0 
         0    0.2164    0.2018    0.5475    0.0284    0.0060         0 
E(:,:,5) = 
         0         0         0         0         0         0         0 
         0   -1.1006         0    0.2096    0.8543    0.0367         0 
         0    0.4039   -0.4039         0         0         0         0 
         0    0.3596    0.0596   -0.4192         0         0         0 
         0    0.0318    0.0596    0.0327   -1.1241         0    1.0000 
         0         0         0         0    0.0771   -0.0771         0 
         0    0.3053    0.2847    0.1769    0.1927    0.0404         0 
 
 
 
 
 
E(:,:,6) = 
         0         0         0         0         0         0         0 
         0   -0.6606         0    0.1258    0.0566    0.4782         0 
         0    0.2425   -0.2425         0         0         0         0 
         0    0.2158    0.0358   -0.2516         0         0         0 

252



 

  

         0    0.0191    0.0358    0.0196   -0.0745         0         0 
         0         0         0         0    0.0051   -1.0051    1.0000 
         0    0.1832    0.1709    0.1062    0.0128    0.5269         0 
 

UNIT INPUT FLOW ENVIRONS   
EP(:,:,1) = 
    -1     0     0     0     0     0     1 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     1     0     0     0     0     0     0 
EP(:,:,2) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.9848   -1.3885         0    0.2644    0.1190    0.0203         0 
         0    0.1019   -0.1019         0         0         0         0 
         0    0.2548    0.0422   -0.2971         0         0         0 
         0    0.0318    0.0596    0.0327   -0.1241         0         0 
    0.0152         0         0         0    0.0051   -0.0203         0 
         0    1.0000         0         0         0         0         0 
EP(:,:,3) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.9848   -1.3885         0    0.2644    0.1190    0.0203         0 
         0    1.1019   -1.1019         0         0         0         0 
         0    0.2548    0.0422   -0.2971         0         0         0 
         0    0.0318    0.0596    0.0327   -0.1241         0         0 
    0.0152         0         0         0    0.0051   -0.0203         0 
         0         0    1.0000         0         0         0         0 
EP(:,:,4) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.9848   -1.3885         0    0.2644    0.1190    0.0203         0 
         0    0.2441   -0.2441         0         0         0         0 
         0    1.1126    0.1845   -1.2971         0         0         0 
         0    0.0318    0.0596    0.0327   -0.1241         0         0 
    0.0152         0         0         0    0.0051   -0.0203         0 
         0         0         0    1.0000         0         0         0 
EP(:,:,5) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.9848   -1.3885         0    0.2644    0.1190    0.0203         0 
         0    0.6198   -0.6198         0         0         0         0 
         0    0.4807    0.0797   -0.5604         0         0         0 
         0    0.2880    0.5401    0.2960   -1.1241         0         0 
    0.0152         0         0         0    0.0051   -0.0203         0 
         0         0         0         0    1.0000         0         0 
EP(:,:,6) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.2472   -0.3485         0    0.0664    0.0299    0.0051         0 
         0    0.1556   -0.1556         0         0         0         0 
         0    0.1207    0.0200   -0.1407         0         0         0 
         0    0.0723    0.1356    0.0743   -0.2822         0         0 
    0.7528         0         0         0    0.2523   -1.0051         0 
         0         0         0         0         0    1.0000         0 
 

UNIT OUTPUT STORAGE ENVIRONS    
SE(:,:,1) = 
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   -1.0000         0         0         0         0         0    1.0000 
    0.3808   -0.5369         0    0.1023    0.0460    0.0079         0 
         0    0.1971   -0.1971         0         0         0         0 
         0    0.1754    0.0291   -0.2045         0         0         0 
         0    0.0155    0.0291    0.0159   -0.0605         0         0 
    0.0124         0         0         0    0.0042   -0.0165         0 
    0.6068    0.1489    0.1389    0.0863    0.0104    0.0087         0 
SE(:,:,2) = 
         0         0         0         0         0         0         0 
         0   -1.3885         0    0.2644    0.1190    0.0051    1.0000 
         0    0.5096   -0.5096         0         0         0         0 
         0    0.4536    0.0752   -0.5288         0         0         0 
         0    0.0401    0.0752    0.0412   -0.1565         0         0 
         0         0         0         0    0.0107   -0.0107         0 
         0    0.3851    0.3592    0.2232    0.0268    0.0056         0 
SE(:,:,3) = 
         0         0         0         0         0         0         0 
         0   -0.2775         0    0.1266    0.1447    0.0062         0 
         0    0.1019   -1.1019         0         0         0    1.0000 
         0    0.0907    0.1626   -0.2533         0         0         0 
         0    0.0080    0.1626    0.0197   -0.1904         0         0 
         0         0         0         0    0.0131   -0.0131         0 
         0    0.0770    0.7766    0.1069    0.0326    0.0068         0 
SE(:,:,4) = 
         0         0         0         0         0         0         0 
         0   -0.7800         0    0.6486    0.1261    0.0054         0 
         0    0.2863   -0.2863         0         0         0         0 
         0    0.2548    0.0422   -1.2971         0         0    1.0000 
         0    0.0225    0.0422    0.1011   -0.1659         0         0 
         0         0         0         0    0.0114   -0.0114         0 
         0    0.2164    0.2018    0.5475    0.0284    0.0060         0 
SE(:,:,5) = 
         0         0         0         0         0         0         0 
         0   -1.1006         0    0.2096    0.8543    0.0367         0 
         0    0.4039   -0.4039         0         0         0         0 
         0    0.3596    0.0596   -0.4192         0         0         0 
         0    0.0318    0.0596    0.0327   -1.1241         0    1.0000 
         0         0         0         0    0.0771   -0.0771         0 
         0    0.3053    0.2847    0.1769    0.1927    0.0404         0 
SE(:,:,6) = 
         0         0         0         0         0         0         0 
         0   -0.6606         0    0.1258    0.0566    0.4782         0 
         0    0.2425   -0.2425         0         0         0         0 
         0    0.2158    0.0358   -0.2516         0         0         0 
         0    0.0191    0.0358    0.0196   -0.0745         0         0 
         0         0         0         0    0.0051   -1.0051    1.0000 
         0    0.1832    0.1709    0.1062    0.0128    0.5269         0 
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UNIT INPUT STORAGE ENVIRONS  
SEP(:,:,1) = 
    -1     0     0     0     0     0     1 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     1     0     0     0     0     0     0 
SEP(:,:,2) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.9848   -1.3885         0    0.2644    0.1190    0.0203         0 
         0    0.1019   -0.1019         0         0         0         0 
         0    0.2548    0.0422   -0.2971         0         0         0 
         0    0.0318    0.0596    0.0327   -0.1241         0         0 
    0.0152         0         0         0    0.0051   -0.0203         0 
         0    1.0000         0         0         0         0         0 
SEP(:,:,3) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.9848   -1.3885         0    0.2644    0.1190    0.0203         0 
         0    1.1019   -1.1019         0         0         0         0 
         0    0.2548    0.0422   -0.2971         0         0         0 
         0    0.0318    0.0596    0.0327   -0.1241         0         0 
    0.0152         0         0         0    0.0051   -0.0203         0 
         0         0    1.0000         0         0         0         0 
SEP(:,:,4) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.9848   -1.3885         0    0.2644    0.1190    0.0203         0 
         0    0.2441   -0.2441         0         0         0         0 
         0    1.1126    0.1845   -1.2971         0         0         0 
         0    0.0318    0.0596    0.0327   -0.1241         0         0 

 
    0.0152         0         0         0    0.0051   -0.0203         0 
         0         0         0    1.0000         0         0         0 
SEP(:,:,5) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.9848   -1.3885         0    0.2644    0.1190    0.0203         0 
         0    0.6198   -0.6198         0         0         0         0 
         0    0.4807    0.0797   -0.5604         0         0         0 
         0    0.2880    0.5401    0.2960   -1.1241         0         0 
    0.0152         0         0         0    0.0051   -0.0203         0 
         0         0         0         0    1.0000         0         0 
SEP(:,:,6) = 
   -1.0000         0         0         0         0         0    1.0000 
    0.2472   -0.3485         0    0.0664    0.0299    0.0051         0 
         0    0.1556   -0.1556         0         0         0         0 
         0    0.1207    0.0200   -0.1407         0         0         0 
         0    0.0723    0.1356    0.0743   -0.2822         0         0 
    0.7528         0         0         0    0.2523   -1.0051         0 
         0         0         0         0         0    1.0000         0 
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ENVIRON PROPERTIES 
 

ep_table =  
    [ 1]    '# nodes, n'             [       6] 
    [ 2]    '# links, L'             [      12] 
    [ 3]    'connectance, L/n^2'     [  0.3333] 
    [ 4]    'link density, L/n'      [       2] 
    [ 5]    'path proliferation'     [  2.1479] 
    [ 6]    'TST'                    [ 83.5835] 
    [ 7]    'Cycling Index (T)'      [  0.1102] 
    [ 8]    'MODE_0 boundary'        [ 41.4697] 
    [ 9]    'MODE_1, 1st pass'       [ 32.9056] 
    [10]    'MODE_2, cycled'         [  9.2082] 
    [11]    'MODE_3, dissipative'    [ 32.9056] 
    [12]    'MODE_4, boundary'       [ 41.4697] 
    [13]    'Amp (T,output)'         [       1] 
    [14]    'Amp (T,input)'          [       4] 
    [15]    'I/D (T,output)'         [  1.5341] 
    [16]    'I/D (T,input)'          [  1.7166] 
    [17]    'Homog (T,output)'       [  1.8916] 
    [18]    'Homog (T,input)'        [  1.8916] 
    [19]    'Aggradation'            [  2.0155] 
    [20]    'Cycling Index (S)'      [  0.9133] 
    [21]    'Amp (S,output)'         [      20] 
    [22]    'Amp (S,input)'          [      21] 
    [23]    'I/D (S,output)'         [294.1484] 
    [24]    'I/D (S,input)'          [454.2225] 
    [25]    'Homog (S,output)'       [  1.1160] 
    [26]    'Homog (S,input)'        [  1.4645] 
    [27]    'Synergism (T)'          [  4.9152] 
    [28]    'Mutualism (T)'          [  2.2727] 
    [29]    'Synergism (S)'          [ 13.0899] 
    [30]    'Mutualism (S)'          [  2.6000] 
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APPENDIX A.C: GLOSSARY OF NETWORK ENVIRON ANALYSIS NOTATION 
 
GENERAL 
n = number of compartments or nodes 
I = n×n identity matrix  
A = n×n adjacency matrix oriented from columns to rows 
L = number of links or arcs in A (number of direct connections) 
F = n×n steady-state flow matrix oriented from columns to rows (M L–2 or –3 T–1)  
z = n×1 steady-state input vector (M L–2 or –3 T–1) 
y = 1×n steady-state output vector (M L–2 or –3 T–1) 
x = n×1 steady-state input vector (M L–2 or –3) 

2n1nn1

1n1nnn

00y
xzF

+×+×

×××
⎥
⎦

⎤
⎢
⎣

⎡
=Δ = composite variable of system data 

T = j

n

j
iji

n

i
ij yfzf +=+ ∑∑ = n×1 vector of steady-state node throughflow (M L–2 or –3 T–1) 

 
THROUGHFLOW 
G = n×n donor-throughflow normalized output-oriented direct flow intensity matrix 
G' = GP = n×n recipient-throughflow normalized input-oriented direct flow intensity matrix 
N = n×n output-oriented integral flow intensity matrix 
N' = NP = n×n input-oriented integral flow intensity matrix 
 
STORAGE  
C = n×n donor-storage normalized output-oriented direct flow intensity matrix  (T–1) 
C' = CP = n×n recipient-storage normalized input-oriented direct flow intensity matrix (T–1) 
dt = discrete time interval 
P = n×n non-dimensional storage-normalized output-oriented direct flow matrix  
P' = PP= n×n non-dimensional storage-normalized input-oriented direct flow matrix  
Q = n×n output-oriented integral flow intensity matrix 
Q' = QP = n×n input-oriented integral flow intensity matrix 
S = Q*dt = 1)C( −−  = n×n dimensional donor-storage normalized output-oriented integral flow intensity 

matrix (T–1) 
S' = SP = Q'*dt = 1)'C( −−  = n×n dimensional recipient-storage normalized output-oriented integral flow 

intensity matrix (T–1) 
 
UTILITY 
D = n×n throughflow-normalized utility matrix 
DS = n×n storage-normalized utility matrix 
U = n×n non-dimensional integral flow utility 
US = n×n non-dimensional integral storage utility  
Y = n×n integral flow utility scaled by original throughflow (M L–2 or –3 T–1) 
YS = n×n integral storage utility scaled by original throughflow (M L–2 or –3 T–1) 
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UNIT ENVIRONS 
E = n+1 × n+1 × n unit output throughflow environs 
EP = E' =  n+1 × n+1 × n unit input throughflow environs 
SE = n+1 × n+1 × n unit output storage environs 
SEP = SE' = n+1 × n+1 × n unit input storage environs  
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Table A.1  Network parameters and environ properties returned by MATLAB® function in ep31×1 
vector. 
 
#        abbreviation short description 
 
[ 1]    '# nodes, n' number of nodes or compartments 
[ 2]    '# links, L' number of direct flows or arcs 
[ 3]    'connectance, L/n^2' connectance 
[ 4]    'link density, L/n' link density 
[ 5]    'path proliferation' )(1 Aλ = rate of pathway proliferation (dominant eigenvalue of A) 
[ 6]    'TST' total system throughflow 
[ 7]    'Cycling Index (T)' cycling index for throughflow = TSTc/TST 
[ 8]    'MODE_0 boundary' boundary input 
[ 9]    'MODE_1, 1st pass' first–passage flow 
[10]    'MODE_2, cycled' cycled flow 
[11]    'MODE_3, dissipative' last passage dissipative flow 
[12]    'MODE_4, boundary' boundary output  
[13]    'Amp (T, output)' network amplification (throughflow, output) 
[14]    'Amp (T, input)' network amplification (throughflow, input) 
[15]    'I/D (T, output)' indirect-to-direct effects ratio or network nonlocality (throughflow, 

output) 
[16]    'I/D (T, input)' indirect-to-direct effects ratio or network nonlocality (throughflow, 

input) 
[17]    'Homog (T,output)' network homogenization (throughflow, output) 
[18]    'Homog (T,input)' network homogenization (throughflow, input) 
[19]    'Aggradation' network aggradation = TST/∑z = average path length  
[20]    'Cycling Index (S)' cycling index calculated for storage analysis 
[21]    'Amp (S, output)' network amplification (storage, output) 
[22]    'Amp (S, input)' network amplification (storage, input) 
[23]    'I/D (S, output)' indirect–to–direct ratio or network nonlocality (storage, output) 
[24]    'I/D (S, input)' indirect–to–direct ratio or network nonlocality (storage, input) 
[25]    'Homog (S, output)' network homogenization (storage, output) 
[26]    'Homog (S, input)' network homogenization (storage, input) 
[27]    'Synergism (T)' benefit–cost ratio or network synergism (throughflow) 
[28]    'Mutualism (T)' positive to negative interaction ratio or network mutualism (throughflow) 
[29]    'Synergism (S)' benefit–cost ratio or network synergism (storage) 
[30]    'Mutualism (S)' positive to negative interaction ratio or network mutualism (storage) 
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APPENDIX A.D: A GLOSSARY OF PRIMARY MATLAB NOTAION USED IN APPENDIX 
A.A 

 

% –  starts a comment line. 

1:6  –  creates the sequence [1,2,3,4,5,6], while 1:2:6 creates the sequence [1,3,5] 

X=[a b] – creates a 1×2 vector with elements a and b; X=[a;b] – creates a 2×1 vector with 

elements a and b.   

X' – transposes matrix X   

sum(A) – returns the column sums of A; sum(A(1:6,:)) sums the first six rows of all the columns;  

sum(A(:)) adds all the elements of A together. 

A^2 –  squares the matrix A; A.^2 – squares the elements of A  

length(A) – returns the largest dimension of A 

diag(A) – returns a vector of the principle diagonal of A if A is a square matrix: If A is a 1×n 

vector, it places the elements on the principle diagonal of a square matrix where all 

entries other than the diagonal are zero. 

mean(A); std(A); max(A) –  these commands return the mean, standard deviation, and maximum 

value of the columns of A.   

find(A) – returns the array address of the non-zero elements of A 

eig(A) – returns a vector of the eigenvalues of A 

inv(A) – returns the inverse matrix of A when it exists 

ones(m,n) – returns an m×n vector filled with ones. 

zeros(m,n) – returns an m×n vector filled with zeros. 

eye(n) – creates an n×n matrix where elements on the principle diagonal are 1 and all others are 

0. 
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